Log in

Recent Progress in High Entropy Alloys for Electrocatalysts

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

High entropy alloys (HEAs), which can incorporate five or more constituents into a single phase stably, have received considerable attention in recent years. The composition/structure complexity and adjustability endow them with a huge design space to adjust electronic structure, geometric configuration as well as catalytic activity through constructing reaction active sites with optimal binding energies of different reaction intermediates. This paper reviews the recent progress on the preparation methods, characterization techniques, electrocatalytic applications and functional mechanisms of HEAs-based electrocatalysts for hydrogen evolution, oxygen evolution and oxygen reduction reactions. The synthesis approaches for HEAs from bottom-up (high-energy ball milling, cryo-milling, melt-spinning and dealloying) to top-down strategies (carbothermal shock, sputtering deposition and solvothermal) and the corresponding materials characterizations are discussed and analyzed. By summarizing and analyzing the electrocatalytic performance of HEAs for diverse electrocatalytic reactions in water electrolysis cells, metal-air batteries and fuel cells, the basic principle of their designs and the relevant mechanisms are discussed. The technical challenges and prospects of HEAs-based electrocatalysts are also summarized with the proposed further research directions. This review can provide a beneficial theoretical reserve and experimental guidance for develo** high performance electrocatalytic materials via the paradigm of high entropy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Yes.

References

  1. Zheng, Y., Wang, J.C., Yu, B., et al.: A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev. 46, 1427–1463 (2017). https://doi.org/10.1039/c6cs00403b

    Article  CAS  Google Scholar 

  2. Wu, H.M., Feng, C.Q., Zhang, L., et al.: Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z

    Article  CAS  Google Scholar 

  3. Haider, R., Wen, Y., Ma, Z.F., et al.: High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem. Soc. Rev. 50, 1138–1187 (2021). https://doi.org/10.1039/d0cs00296h

    Article  CAS  Google Scholar 

  4. Yang, D., Tan, H.T., Rui, X.H., et al.: Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 395–427 (2019). https://doi.org/10.1007/s41918-019-00035-5

    Article  CAS  Google Scholar 

  5. Leow, W.R., Lum, Y., Ozden, A., et al.: Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020). https://doi.org/10.1126/science.aaz8459

    Article  CAS  Google Scholar 

  6. Pan, J., Xu, Y.Y., Yang, H., et al.: Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 5, 1700691 (2018). https://doi.org/10.1002/advs.201700691

    Article  CAS  Google Scholar 

  7. Yang, D.J., Zhang, L.J., Yan, X.C., et al.: Recent progress in oxygen electrocatalysts for zinc-air batteries. Small Methods 1, 1700209 (2017). https://doi.org/10.1002/smtd.201700209

    Article  CAS  Google Scholar 

  8. Zhang, L., Doyle-Davis, K., Sun, X.L.: Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ. Sci. 12, 492–517 (2019). https://doi.org/10.1039/c8ee02939c

    Article  CAS  Google Scholar 

  9. Wang, D., **n, H.L., Hovden, R., et al.: Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). https://doi.org/10.1038/nmat3458

    Article  CAS  Google Scholar 

  10. Huang, X.Q., Zhao, Z.P., Cao, L., et al.: High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765

    Article  CAS  Google Scholar 

  11. Zhao, X., Chen, S., Fang, Z.C., et al.: Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 137, 2804–2807 (2015). https://doi.org/10.1021/ja511596c

    Article  CAS  Google Scholar 

  12. Li, M., Zhao, Z., Cheng, T., et al.: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016). https://doi.org/10.1126/science.aaf9050

    Article  CAS  Google Scholar 

  13. Jiang, K.Z., Zhao, D.D., Guo, S.J., et al.: Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 3, e1601705 (2017). https://doi.org/10.1126/sciadv.1601705

    Article  CAS  Google Scholar 

  14. Chong, L., Wen, J., Kubal, J., et al.: Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018). https://doi.org/10.1126/science.aau0630

    Article  CAS  Google Scholar 

  15. Tian, X., Zhao, X., Su, Y.Q., et al.: Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019). https://doi.org/10.1126/science.aaw7493

    Article  CAS  Google Scholar 

  16. Escudero-Escribano, M., Malacrida, P., Hansen, M.H., et al.: Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016). https://doi.org/10.1126/science.aad8892

    Article  CAS  Google Scholar 

  17. Choi, S.I., Lee, S.U., Kim, W.Y., et al.: Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. ACS Appl. Mater. Interfaces 4, 6228–6234 (2012). https://doi.org/10.1021/am301824w

    Article  CAS  Google Scholar 

  18. Zhang, C., Hwang, S.Y., Trout, A., et al.: Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction reaction. J Am. Chem. Soc. 136, 7805–7808 (2014). https://doi.org/10.1021/ja501293x

    Article  CAS  Google Scholar 

  19. Oezaslan, M., Hasché, F., Strasser, P.: PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J. Electrochem. Soc. 159, B444–B454 (2012). https://doi.org/10.1149/2.106204jes

    Article  CAS  Google Scholar 

  20. Sun, S.H., Murray, C.B., Weller, D., et al.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000). https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  Google Scholar 

  21. Murty, B.S., Yeh, J.W., Ranganathan, S.: High-entropy alloys: basic concepts. In: Murty, B.S., Yeh, J.W., Ranganathan, S. (eds.) High Entropy Alloys, pp. 13–35. Butterworth-Heinemann, Boston (2014)

    Google Scholar 

  22. Greer, A.L.: Confusion by design. Nature 366, 303–304 (1993). https://doi.org/10.1038/366303a0

    Article  Google Scholar 

  23. Cantor, B., Chang, I.T.H., Knight, P., et al.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  24. Yeh, J.W., Chen, S.K., Lin, S.J., et al.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  25. George, E.P., Raabe, D., Ritchie, R.O.: High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4

    Article  CAS  Google Scholar 

  26. Yeh, J.W., Lin, S.J., Chin, T.S., et al.: Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533–2536 (2004). https://doi.org/10.1007/s11661-006-0234-4

    Article  Google Scholar 

  27. Qiu, X.W., Zhang, Y.P., He, L., et al.: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloys Compd. 549, 195–199 (2013). https://doi.org/10.1016/j.jallcom.2012.09.091

    Article  CAS  Google Scholar 

  28. Lu, Y., Dong, Y., Guo, S., et al.: A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014). https://doi.org/10.1038/srep06200

    Article  CAS  Google Scholar 

  29. Wu, J.M., Lin, S.J., Yeh, J.W., et al.: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513–519 (2006). https://doi.org/10.1016/j.wear.2005.12.008

    Article  CAS  Google Scholar 

  30. Samal, S., Mohanty, S., Misra, A.K., et al.: Mechanical behavior of novel suction cast Ti-Cu-Fe-Co-Ni high entropy alloys. Mater. Sci. Forum 790–791, 503–508 (2014). https://doi.org/10.4028/www.scientific.net/msf.790-791.503

    Article  Google Scholar 

  31. Gludovatz, B., Hohenwarter, A., Catoor, D., et al.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014). https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  32. Li, H.N., Zhu, H., Zhang, S.G., et al.: Nano high-entropy materials: synthesis strategies and catalytic applications. Small Struct. 1, 2070004 (2020). https://doi.org/10.1002/sstr.202070004

    Article  Google Scholar 

  33. **n, Y., Li, S.H., Qian, Y.Y., et al.: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306 (2020). https://doi.org/10.1021/acscatal.0c03617

    Article  CAS  Google Scholar 

  34. Ostovari Moghaddam, A., Trofimov, E.A.: Toward expanding the realm of high entropy materials to platinum group metals: a review. J. Alloys Compd. 851, 156838 (2021). https://doi.org/10.1016/j.jallcom.2020.156838

    Article  CAS  Google Scholar 

  35. Yang, Y., Luo, M.C., Zhang, W.Y., et al.: Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 4, 2054–2083 (2018). https://doi.org/10.1016/j.chempr.2018.05.019

    Article  CAS  Google Scholar 

  36. Shao, Q., Wang, P.T., Huang, X.Q.: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29, 1806419 (2019). https://doi.org/10.1002/adfm.201806419

    Article  CAS  Google Scholar 

  37. Luo, M.C., Guo, S.J.: Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59

    Article  CAS  Google Scholar 

  38. **a, Z., Guo, S.: Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 48, 3265–3278 (2019). https://doi.org/10.1039/c8cs00846a

    Article  CAS  Google Scholar 

  39. **e, C., Niu, Z., Kim, D., et al.: Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020). https://doi.org/10.1021/acs.chemrev.9b00220

    Article  CAS  Google Scholar 

  40. Tomboc, G.M., Kwon, T., Joo, J., et al.: High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J. Mater. Chem. A 8, 14844–14862 (2020). https://doi.org/10.1039/d0ta05176d

    Article  CAS  Google Scholar 

  41. Xue, Q., Bai, X.Y., Zhao, Y., et al.: Au core-PtAu alloy shell nanowires for formic acid electrolysis. J. Energy Chem. 65, 94–102 (2022). https://doi.org/10.1016/j.jechem.2021.05.034

    Article  CAS  Google Scholar 

  42. Dai, W.J., Lu, T., Pan, Y.: Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power Sources 430, 104–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.030

    Article  CAS  Google Scholar 

  43. Torralba, J.M., Venkatesh Kumarán, S.: Development of competitive high-entropy alloys using commodity powders. Mater. Lett. 301, 130202 (2021). https://doi.org/10.1016/j.matlet.2021.130202

    Article  CAS  Google Scholar 

  44. Fang, G., Gao, J.J., Lv, J., et al.: Multi-component nanoporous alloy/(oxy) hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B Environ. 268, 118431 (2020). https://doi.org/10.1016/j.apcatb.2019.118431

    Article  CAS  Google Scholar 

  45. Qiu, H.J., Fang, G., Gao, J.J., et al.: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 1, 526–533 (2019). https://doi.org/10.1021/acsmaterialslett.9b00414

    Article  CAS  Google Scholar 

  46. Al Bacha, S., Pighin, S.A., Urretavizcaya, G., et al.: Effect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. Int. J. Hydrog. Energy 45, 20883–20893 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.214

    Article  CAS  Google Scholar 

  47. Uemoto, Y., Kondo, K., Niwa, T.: Cryo-milling with spherical crystalline cellulose beads: a contamination-free and safety conscious technology. Eur. J. Pharm. Sci. 143, 105175 (2020). https://doi.org/10.1016/j.ejps.2019.105175

    Article  CAS  Google Scholar 

  48. Ma, P.Y., Zhao, M.M., Zhang, L., et al.: Self- supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition. J. Materiomics 6, 736–742 (2020). https://doi.org/10.1016/j.jmat.2020.06.001

    Article  Google Scholar 

  49. Chen, H., Lin, W.W., Zhang, Z.H., et al.: Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater. Lett. 1, 83–88 (2019). https://doi.org/10.1021/acsmaterialslett.9b00064

    Article  CAS  Google Scholar 

  50. Chen, Y.: Solid-state formation of carbon nanotubes. In: Dai, L. (ed.) Carbon Nanotechnology, pp. 53–80. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  51. Hemantkumar, J., Mayur, H., Patil, C.K., et al.: A review on cryogenic grinding. Int. J. Eng. Sci. 7, 420–423 (2017)

    Google Scholar 

  52. Nellaiappan, S., Katiyar, N.K., Kumar, R., et al.: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization. ACS Catal. 10, 3658–3663 (2020). https://doi.org/10.1021/acscatal.9b04302

    Article  CAS  Google Scholar 

  53. Laplanche, G., Horst, O., Otto, F., et al.: Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing. J. Alloys Compd. 647, 548–557 (2015). https://doi.org/10.1016/j.jallcom.2015.05.129

    Article  CAS  Google Scholar 

  54. Dong, Y., Duan, S.G., Huang, X., et al.: Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 high-entropy alloy at room and cryogenic temperatures. Mater. Lett. 294, 129778 (2021). https://doi.org/10.1016/j.matlet.2021.129778

    Article  CAS  Google Scholar 

  55. Bae, J.W., Park, J.M., Moon, J., et al.: Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys. J. Alloys Compd. 781, 75–83 (2019). https://doi.org/10.1016/j.jallcom.2018.12.040

    Article  CAS  Google Scholar 

  56. Chen, X.H., **e, W.Y., Zhu, J., et al.: Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 128, 107024 (2021). https://doi.org/10.1016/j.intermet.2020.107024

    Article  CAS  Google Scholar 

  57. Yi, J.J., Tang, S., Xu, M.Q., et al.: A novel Al0.5CrCuNiV 3d transition metal high-entropy alloy: phase analysis, microstructure and compressive properties. J. Alloys Compd. 846, 156466 (2020). https://doi.org/10.1016/j.jallcom.2020.156466

    Article  CAS  Google Scholar 

  58. Niu, Z.Z., **e, Y., Axinte, E., et al.: Development and characterization of novel Ni-rich high-entropy alloys. J. Alloys Compd. 846, 156342 (2020). https://doi.org/10.1016/j.jallcom.2020.156342

    Article  CAS  Google Scholar 

  59. Park, K.B., Park, J.Y., Kim, Y.D., et al.: Spark plasma sintering behavior of TaNbHfZrTi high-entropy alloy powder synthesized by hydrogenation-dehydrogenation reaction. Intermetallics 130, 107077 (2021). https://doi.org/10.1016/j.intermet.2020.107077

    Article  CAS  Google Scholar 

  60. Liu, Q., Wang, G.F., Sui, X.C., et al.: Ultra-fine grain TixVNbMoTa refractory high-entropy alloys with superior mechanical properties fabricated by powder metallurgy. J. Alloys Compd. 865, 158592 (2021). https://doi.org/10.1016/j.jallcom.2020.158592

    Article  CAS  Google Scholar 

  61. Zhou, J., Liao, H.C., Chen, H., et al.: Carbon-alloyed Fe35Mn10Cr20Ni35 high entropy alloy synthesized by mechanical alloying plus spark plasma sintering. J. Alloys Compd. 859, 157851 (2021). https://doi.org/10.1016/j.jallcom.2020.157851

    Article  CAS  Google Scholar 

  62. Qiu, H.J., Fang, G., Wen, Y.R., et al.: Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7, 6499–6506 (2019). https://doi.org/10.1039/c9ta00505f

    Article  CAS  Google Scholar 

  63. **, Z.Y., Lv, J., Jia, H.L., et al.: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 15, 1904180 (2019). https://doi.org/10.1002/smll.201904180

    Article  CAS  Google Scholar 

  64. **, Z.Y., Lyu, J., Zhao, Y.L., et al.: Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn-air batteries. ACS Mater. Lett. 2, 1698–1706 (2020). https://doi.org/10.1021/acsmaterialslett.0c00434

    Article  CAS  Google Scholar 

  65. Yang, L.Z., Li, Y.Y., Wang, Z.F., et al.: Nanoporous quasi-high-entropy alloy microspheres. Met. Basel 9, 345 (2019). https://doi.org/10.3390/met9030345

    Article  CAS  Google Scholar 

  66. Peng, H.L., **e, Y., **e, Z.C., et al.: Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. J. Mater. Chem. A 8, 18318–18326 (2020). https://doi.org/10.1039/D0TA04940A

    Article  CAS  Google Scholar 

  67. Ding, Z.Y., Bian, J.J., Shuang, S., et al.: High entropy intermetallic-oxide core-shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 4, 1900105 (2020). https://doi.org/10.1002/adsu.201900105

    Article  CAS  Google Scholar 

  68. Koh, S., Strasser, P.: Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007). https://doi.org/10.1021/ja0742784

    Article  CAS  Google Scholar 

  69. Wang, D., Yu, Y., **n, H.L., et al.: Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 12, 5230–5238 (2012). https://doi.org/10.1021/nl302404g

    Article  CAS  Google Scholar 

  70. Li, X., Chen, Q., McCue, I., et al.: Dealloying of noble-metal alloy nanoparticles. Nano Lett. 14, 2569–2577 (2014). https://doi.org/10.1021/nl500377g

    Article  CAS  Google Scholar 

  71. Li, G.G., Lin, Y., Wang, H.: Residual silver remarkably enhances electrocatalytic activity and durability of dealloyed gold nanosponge particles. Nano Lett. 16, 7248–7253 (2016). https://doi.org/10.1021/acs.nanolett.6b03685

    Article  CAS  Google Scholar 

  72. Li, G.G., Villarreal, E., Zhang, Q.F., et al.: Controlled dealloying of alloy nanoparticles toward optimization of electrocatalysis on spongy metallic nanoframes. ACS Appl. Mater. Interfaces 8, 23920–23931 (2016). https://doi.org/10.1021/acsami.6b07309

    Article  CAS  Google Scholar 

  73. Pavlišič, A., Jovanovič, P., Šelih, V.S., et al.: Atomically resolved dealloying of structurally ordered Pt nanoalloy as an oxygen reduction reaction electrocatalyst. ACS Catal. 6, 5530–5534 (2016). https://doi.org/10.1021/acscatal.6b00557

    Article  CAS  Google Scholar 

  74. Strasser, P., Kühl, S.: Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy 29, 166–177 (2016). https://doi.org/10.1016/j.nanoen.2016.04.047

    Article  CAS  Google Scholar 

  75. Oezaslan, M., Heggen, M., Strasser, P.: Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J. Am. Chem. Soc. 134, 514–524 (2012). https://doi.org/10.1021/ja2088162

    Article  CAS  Google Scholar 

  76. Erlebacher, J., Aziz, M.J., Karma, A., et al.: Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001). https://doi.org/10.1038/35068529

    Article  CAS  Google Scholar 

  77. Gan, L., Heggen, M., O’Malley, R., et al.: Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131–1138 (2013). https://doi.org/10.1021/nl304488q

    Article  CAS  Google Scholar 

  78. Ortega, S., Ibáñez, M., Liu, Y., et al.: Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 46, 3510–3528 (2017). https://doi.org/10.1039/c6cs00567e

    Article  CAS  Google Scholar 

  79. Nugroho, F.A.A., Iandolo, B., Wagner, J.B., et al.: Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 10, 2871–2879 (2016). https://doi.org/10.1021/acsnano.5b08057

    Article  CAS  Google Scholar 

  80. Yu, H.D., Regulacio, M.D., Ye, E.Y., et al.: Chemical routes to top-down nanofabrication. Chem. Soc. Rev. 42, 6006–6018 (2013). https://doi.org/10.1039/c3cs60113g

    Article  CAS  Google Scholar 

  81. Junka, R., Laurencin, C.T., et al.: Introduction to regenerative engineering. In: Narayan, R. (ed.) Encyclopedia of Biomedical Engineering, pp. 624–630. Elsevier, Amsterdam (2019)

    Google Scholar 

  82. Yao, Y., Huang, Z., **e, P., et al.: Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412

    Article  CAS  Google Scholar 

  83. **e, P., Yao, Y., Huang, Z., et al.: Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019). https://doi.org/10.1038/s41467-019-11848-9

    Article  CAS  Google Scholar 

  84. Xu, X., Du, Y.K., Wang, C.H., et al.: High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors. J. Alloys Compd. 822, 153642 (2020). https://doi.org/10.1016/j.jallcom.2020.153642

    Article  CAS  Google Scholar 

  85. Peters, T.A., Stange, M., Bredesen, R.: Fabrication of palladium-based membranes by magnetron sputtering. In: Koumanakos, A., Kakaras, E. (eds.) Palladium Membrane Technology for Hydrogen Production. Carbon Capture and Other Applications, pp. 25–41. Woodhead Publishing, Cambridge (2015)

    Chapter  Google Scholar 

  86. Zhang, N., Feng, X., Rao, D., et al.: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020). https://doi.org/10.1038/s41467-020-17934-7

    Article  CAS  Google Scholar 

  87. Löffler, T., Meyer, H., Savan, A., et al.: Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018). https://doi.org/10.1002/aenm.201802269

    Article  CAS  Google Scholar 

  88. Löffler, T., Savan, A., Meyer, H., et al.: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem. Int. Ed. 59, 5844–5850 (2020). https://doi.org/10.1002/anie.201914666

    Article  CAS  Google Scholar 

  89. Rao, B.G., Mukherjee, D., Reddy, B.M.: Novel approaches for preparation of nanoparticles. In: Ficai, D., Grumezescu, A.M. (eds.) Nanostructures for Novel Therapy, pp. 1–36. Elsevier, Amsterdam (2017)

    Google Scholar 

  90. Ud Din, M.A., Saleem, F., Ni, B., et al.: Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 29, 1604994 (2017). https://doi.org/10.1002/adma.201604994

    Article  CAS  Google Scholar 

  91. Mahmood, A., **e, N., Ud Din, M.A., et al.: Shape controlled synthesis of porous tetrametallic PtAgBiCo nanoplates as highly active and methanol-tolerant electrocatalyst for oxygen reduction reaction. Chem. Sci. 8, 4292–4298 (2017). https://doi.org/10.1039/c7sc00318h

    Article  CAS  Google Scholar 

  92. Li, H., Han, Y., Zhao, H., et al.: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11, 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9

    Article  CAS  Google Scholar 

  93. Kusada, K., Kitagawa, H.: A route for phase control in metal nanoparticles: a potential strategy to create advanced materials. Adv. Mater. 28, 1129–1142 (2016). https://doi.org/10.1002/adma.201502881

    Article  CAS  Google Scholar 

  94. Wu, D., Kusada, K., Yamamoto, T., et al.: On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem. Sci. 11, 12731–12736 (2020). https://doi.org/10.1039/d0sc02351e

    Article  CAS  Google Scholar 

  95. Wu, D., Kusada, K., Yamamoto, T., et al.: Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 142, 13833–13838 (2020). https://doi.org/10.1021/jacs.0c04807

    Article  CAS  Google Scholar 

  96. Jones, H.: Introduction to solid state physics by C. Kittel. Acta Crystallogr. 10, 390–390 (1957). https://doi.org/10.1107/s0365110x57001280

    Article  Google Scholar 

  97. Takeuchi, A., Inoue, A.: Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng. A Struct. 304–306, 446–451 (2001). https://doi.org/10.1016/S0921-5093(00)01446-5

    Article  Google Scholar 

  98. Yang, X., Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  99. Wang, X.F., Zhang, Y., Qiao, Y., et al.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357–362 (2007). https://doi.org/10.1016/j.intermet.2006.08.005

    Article  CAS  Google Scholar 

  100. Zhang, K.B., Fu, Z.Y., Zhang, J.Y., et al.: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33–38 (2010). https://doi.org/10.1016/j.jallcom.2009.12.010

    Article  CAS  Google Scholar 

  101. Zhou, Y.J., Zhang, Y., Kim, T.N., et al.: Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties. Mater. Lett. 62, 2673–2676 (2008). https://doi.org/10.1016/j.matlet.2008.01.011

    Article  CAS  Google Scholar 

  102. Zhou, Y.J., Zhang, Y., Wang, F.J., et al.: Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1–x solid-solution alloys. Appl. Phys. Lett. 92, 241917 (2008). https://doi.org/10.1063/1.2938690

    Article  CAS  Google Scholar 

  103. Yao, Y., Liu, Z., **e, P., et al.: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 6, eaaz0510 (2020). https://doi.org/10.1126/sciadv.aaz0510

    Article  CAS  Google Scholar 

  104. Lu, Z.L., Chen, Z.W., Singh, C.V.: Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 3, 1318–1333 (2020). https://doi.org/10.1016/j.matt.2020.07.029

    Article  Google Scholar 

  105. Zhang, D., Shi, Y., Zhao, H., et al.: The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J. Mater. Chem. A 9, 889–893 (2021). https://doi.org/10.1039/d0ta10574k

    Article  CAS  Google Scholar 

  106. Guo, S., Ng, C., Lu, J., et al.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011). https://doi.org/10.1063/1.3587228

    Article  CAS  Google Scholar 

  107. Hodoroaba, V.D.: Energy-dispersive X-Ray spectroscopy. In: Hodoroaba, V.D., Unger, W.E.S., Shard, A.G. (eds.) Characterization of Nanoparticles, pp. 397–417. Elsevier, Amsterdam (2020)

    Chapter  Google Scholar 

  108. Valković, V.: Measurements of radioactivity. In: Valković, V. (ed.) The Environment, pp. 117–258. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  109. Chen, Y.F., Zhan, X., Bueno, S.L.A., et al.: Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 6, 231–237 (2021). https://doi.org/10.1039/d0nh00656d

    Article  CAS  Google Scholar 

  110. Iwashita, N.: X-Ray powder diffraction. In: Inagaki, M., Kang, F. (eds.) Materials Science and Engineering of Carbon, pp. 7–25. Butterworth-Heinemann, Oxford (2016)

    Google Scholar 

  111. Song, B., Yang, Y., Yang, T.T., et al.: Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy. Nano Lett. 21, 1742–1748 (2021). https://doi.org/10.1021/acs.nanolett.0c04572

    Article  CAS  Google Scholar 

  112. Luo, M.C., Zhao, Z.L., Zhang, Y.L., et al.: PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7

    Article  CAS  Google Scholar 

  113. Hart, D.: Hydrogen, end uses and economics. In: Cleveland, C.J. (ed.) Encyclopedia of Energy, pp. 231–239. Elsevier, New York (2004)

    Chapter  Google Scholar 

  114. Dubouis, N., Grimaud, A.: The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 10, 9165–9181 (2019). https://doi.org/10.1039/c9sc03831k

    Article  CAS  Google Scholar 

  115. Li, Y., Wang, H., **e, L., et al.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011). https://doi.org/10.1021/ja201269b

    Article  CAS  Google Scholar 

  116. Liu, M.M., Zhang, Z.H., Okejiri, F., et al.: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 6, 1900015 (2019). https://doi.org/10.1002/admi.201900015

    Article  CAS  Google Scholar 

  117. Li, L.G., Wang, P.T., Shao, Q., et al.: Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. (2021). https://doi.org/10.1002/adma.202004243

    Article  Google Scholar 

  118. Moriau, L., Bele, M., Marinko, Ž, et al.: Effect of the morphology of the high-surface-area support on the performance of the oxygen-evolution reaction for iridium nanoparticles. ACS Catal. 11, 670–681 (2021). https://doi.org/10.1021/acscatal.0c04741

    Article  CAS  Google Scholar 

  119. Lee, J., Kumar, A., Yang, T., et al.: Stabilizing the OOH* intermediate via pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation. Energy Environ. Sci. 13, 5152–5164 (2020). https://doi.org/10.1039/d0ee03183f

    Article  CAS  Google Scholar 

  120. Zhao, Z.L., Wang, Q., Huang, X., et al.: Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 13, 5143–5151 (2020). https://doi.org/10.1039/d0ee01960g

    Article  CAS  Google Scholar 

  121. Tsai, F.T., Deng, Y.T., Pao, C.W., et al.: The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting. J. Mater. Chem. A 8, 9939–9950 (2020). https://doi.org/10.1039/d0ta01877e

    Article  CAS  Google Scholar 

  122. Urbain, F., Du, R.F., Tang, P.Y., et al.: Upscaling high activity oxygen evolution catalysts based on CoFe2O4 nanoparticles supported on nickel foam for power-to-gas electrochemical conversion with energy efficiencies above 80%. Appl. Catal. B Environ. 259, 118055 (2019). https://doi.org/10.1016/j.apcatb.2019.118055

    Article  CAS  Google Scholar 

  123. Wu, Y.Z., Meng, Y.N., Hou, J.G., et al.: Orienting active crystal planes of new class lacunaris Fe2PO5 polyhedrons for robust water oxidation in alkaline and neutral media. Adv. Funct. Mater. 28, 1801397 (2018). https://doi.org/10.1002/adfm.201801397

    Article  CAS  Google Scholar 

  124. Xu, K.L., Song, F., Gu, J., et al.: Solvent-induced surface hydroxylation of a layered perovskite Sr3FeCoO7–δ for enhanced oxygen evolution catalysis. J. Mater. Chem. A 6, 14240–14245 (2018). https://doi.org/10.1039/c8ta04976a

    Article  CAS  Google Scholar 

  125. Favaro, M., Drisdell, W.S., Marcus, M.A., et al.: An operando investigation of (Ni–Fe–Co–Ce)Ox system as highly efficient electrocatalyst for oxygen evolution reaction. ACS Catal. 7, 1248–1258 (2017). https://doi.org/10.1021/acscatal.6b03126

    Article  CAS  Google Scholar 

  126. Zheng, X.J., Cao, X.C., Zeng, K., et al.: A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries. Small 17, 2006183 (2021). https://doi.org/10.1002/smll.202006183

    Article  CAS  Google Scholar 

  127. Yan, Y., Liu, C.Y., Jian, H.W., et al.: Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 31, 2009610 (2021). https://doi.org/10.1002/adfm.202009610

    Article  CAS  Google Scholar 

  128. He, Y.Q., Liu, X.H., Yan, A.L., et al.: Hybrid nanostructures of bimetallic NiCo nitride/N-doped reduced graphene oxide as efficient bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 7, 19612–19620 (2019). https://doi.org/10.1021/acssuschemeng.9b04703

    Article  CAS  Google Scholar 

  129. Li, Y.J., Sun, Y.J., Qin, Y.N., et al.: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 10, 1903120 (2020). https://doi.org/10.1002/aenm.201903120

    Article  CAS  Google Scholar 

  130. Ma, P.Y., Zhang, S.C., Zhang, M.T., et al.: Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Sci. China Mater. 63, 2613–2619 (2020). https://doi.org/10.1007/s40843-020-1461-2

    Article  Google Scholar 

  131. Lim, D.H., Wilcox, J.: Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C 116, 3653–3660 (2012). https://doi.org/10.1021/jp210796e

    Article  CAS  Google Scholar 

  132. Nørskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  133. Wang, K., Huang, J.H., Chen, H.X., et al.: Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chem. Commun. 56, 12109–12121 (2020). https://doi.org/10.1039/d0cc05156j

    Article  CAS  Google Scholar 

  134. Li, T.Y., Yao, Y.G., Ko, B.H., et al.: Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 31, 2010561 (2021). https://doi.org/10.1002/adfm.202010561

    Article  CAS  Google Scholar 

  135. Huang, K., Peng, D.D., Yao, Z.X., et al.: Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chem. Eng. J. 425, 131533 (2021). https://doi.org/10.1016/j.cej.2021.131533

    Article  CAS  Google Scholar 

  136. Nandan, R., Rekha, M.Y., Devi, H.R., et al.: High-entropy alloys for water oxidation: a new class of electrocatalysts to look out for. Chem. Commun. 57, 611–614 (2021). https://doi.org/10.1039/d0cc06485h

    Article  CAS  Google Scholar 

Download references

Funding

Authors would like to thank the financial support of the Training Program of the Major Research Plan of the National Natural Science Foundation of China (92061124), the National Natural Science Foundation of China (21975292, 21978331, 21905311, 21776176), Guangdong Province Nature Science Foundation (2020A1515010343, 2021A1515010167, 2022A1515011196), Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2016TQ03N322).

Author information

Authors and Affiliations

Authors

Contributions

No any statement need to be additionally declared.

Corresponding authors

Correspondence to **anxia Yuan, Shuqin Song or Jiujun Zhang.

Ethics declarations

Conflict of interest

There is no any conflict or competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Huang, J., Chen, H. et al. Recent Progress in High Entropy Alloys for Electrocatalysts. Electrochem. Energy Rev. 5 (Suppl 1), 17 (2022). https://doi.org/10.1007/s41918-022-00144-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00144-8

Keywords

Navigation