Log in

Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH3 production targets as well. In this work, a class of dealloyed Ti60Cu33Mn7 ribbons with enough nanoparticles for the high-efficient NO reduction reaction to NH3 is fabricated, reaching an excellent Faradaic efficiency of 93.2% at -0.5 V vs reversible hydrogen electrode and a high NH3 synthesis rate of 717.4 μmol·h-1·mgcat.-1 at -0.6 V vs reversible hydrogen electrode. The formed nanoparticles on the surface of the catalyst could facilitate the exposure of active sites and the transportation of various reactive ions and gases. Meanwhile, the Mn content in the TiCuMn ribbons modulates the chemical and physical properties of its surface, such as modifying the electronic structure of the Cu species, optimizing the adsorption energy of N* atoms, decreasing the strength of the NO adsorption, and eliminating the thermodynamic energy barrier, thus improving the NO reduction reaction catalytic performance. Moreover, a Zn-NO battery was fabricated using the catalyst and Zn plates, generating an NH3 yield of 129.1 μmol·h-1·cm-2 while offering a peak power density of 1.45 mW·cm-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. Qu Z, Sun F, Pi X, Li X, Wu D, Gao J, Zhao G. One-step synergistic optimization of hierarchical pore topology and nitrogen dopants in activated coke for efficient catalytic oxidation of nitric oxide. Journal of Cleaner Production, 2022, 335: 130360

    Article  CAS  Google Scholar 

  2. Kreuzer L B, Patel C K N. Nitric oxide air pollution: detection by optoacoustic spectroscopy. Science, 1971, 173(3991): 45–47

    Article  CAS  PubMed  Google Scholar 

  3. Chebrolu V T, Jang D, Rani G M, Lim C, Yong K, Kim W B. Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361

    Article  CAS  Google Scholar 

  4. Zhang S, Liu Q, Tang X, Zhou Z, Fan T, You Y, Zhang Q, Zhang S, Luo J, Liu X. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Frontiers of Chemical Science and Engineering, 2023, 17(6): 726–734

    Article  CAS  Google Scholar 

  5. Wu H E, Fei G T, Gao X D, Guo X, Gong X X, Ma X L, Wang Q, Xv S H. Research progress on preparation and application of polyaniline and its composite materials. China Powder Science and Technology, 2023, 29(5): 70–80

    Google Scholar 

  6. Sun B, Lu S, Qian Y, Zhang X, Tian J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy, 2023, 5(3): e305

    Article  CAS  Google Scholar 

  7. Ji Y Q, Yu Z H, Yan L G, Wen S. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Science and Technology, 2023, 29(4): 100–107

    Google Scholar 

  8. Theerthagiri J, Karuppasamy K, Mahadi A H, Moon C J, Rahamathulla N, Kheawhom S, Alameri S, Alfantazi A, Murthy A P, Choi M Y. Electrochemical reduction of gaseous nitric oxide into ammonia: a review. Environmental Chemistry Letters, 2024, 22(1): 189–208

    Article  CAS  Google Scholar 

  9. Gao L, Xv X B, Hu C Q, Zhong J, Sun L B. Preparation and investigation of high performance Pt-Mn alloy catalyst towards oxygen reduction. China Powder Science and Technology, 2023, 29(2): 1–9

    Google Scholar 

  10. Tounsi H, Djemal S, Petitto C, Delahay G. Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2011, 107(1): 158–163

    Article  CAS  Google Scholar 

  11. Zhang G, Wang G, Wan Y, Liu X, Chu K. Ampere-level nitrate electroreduction to ammonia over monodispersed Bi-doped FeS2. ACS Nano, 2023, 17(21): 21328–21336

    Article  PubMed  Google Scholar 

  12. Chen S, Qi G, Yin R, Liu Q, Feng L, Feng X, Hu G, Luo J, Liu X, Liu W. Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale, 2023, 15(48): 19577–19585

    Article  CAS  PubMed  Google Scholar 

  13. Sun T, Gao F, Wang Y, Yi H, Yu Q, Zhao S, Tang X. Morphology and valence state evolution of Cu: unraveling the impact on nitric oxide electroreduction. Journal of Energy Chemistry, 2024, 91: 276–286

    Article  CAS  Google Scholar 

  14. Long J, Chen S, Zhang Y, Guo C, Fu X, Deng D, **ao J. Direct electrochemical ammonia synthesis from nitric oxide. Angewandte Chemie International Edition, 2020, 59(24): 9711–9718

    Article  CAS  PubMed  Google Scholar 

  15. Krzywda P M, Paradelo Rodríguez A, Benes N E, Mei B T, Mul G. Effect of electrolyte and electrode configuration on Cu-catalyzed nitric oxide reduction to ammonia. ChemElectroChem, 2022, 9(5): e202101273

    Article  CAS  Google Scholar 

  16. Chen L, Sun W, Xu Z, Hao M, Li B, Liu X, Ma J, Wang L, Li C, Wang W. Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceramics International, 2022, 48(15): 21151–21161

    Article  CAS  Google Scholar 

  17. Shi J, Wang C, Yang R, Chen F, Meng N, Yu Y, Zhang B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru do**. Science China. Chemistry, 2021, 64(9): 1493–1497

    Article  CAS  Google Scholar 

  18. Ren Z, Zhang H, Wang S, Huang B, Dai Y, Wei W. Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(15): 8568–8577

    Article  CAS  Google Scholar 

  19. Feng J, Ji Y, Li Y. In silico design of copper-based alloys for ammonia synthesis from nitric oxide reduction accelerated by machine learning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(26): 14195–14203

    Article  CAS  Google Scholar 

  20. Yang M, Wei T, He J, Liu Q, Feng L, Li H, Luo J, Liu X. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Research, 2024, 17(3): 1209–1216

    Article  CAS  Google Scholar 

  21. Curtin T, O’ Regan F, Deconinck C, Knüttle N, Hodnett B K. The catalytic oxidation of ammonia: influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts. Catalysis Today, 2000, 55(1): 189–195

    Article  CAS  Google Scholar 

  22. Ge Z X, Wang T J, Ding Y, Yin S B, Li F M, Chen P, Chen Y. Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Advanced Energy Materials, 2022, 12(15): 2103916

    Article  CAS  Google Scholar 

  23. Zhang W, Qin X, Wei T, Liu Q, Luo J, Liu X. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. Journal of Colloid and Interface Science, 2023, 638: 650–657

    Article  CAS  PubMed  Google Scholar 

  24. Ding J, Hou X, Qiu Y, Zhang S, Liu Q, Luo J, Liu X. Iron-do** strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorganic Chemistry Communications, 2023, 151: 110621

    Article  CAS  Google Scholar 

  25. Wang G, Zhang J, Liu L, Zhou J Z, Liu Q, Qian G, Xu Z P, Richards R M. Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. Journal of Cleaner Production, 2018, 183: 917–924

    Article  CAS  Google Scholar 

  26. Hua H, Zeng J, Wang G, Zhang J, Zhou J, Pan Y, Liu Q, Xu Y, Qian G, Xu Z P. Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low-temperature selective catalytic reduction of NO. Journal of Hazardous Materials, 2020, 381: 120935

    Article  CAS  PubMed  Google Scholar 

  27. Zhang K, Li Z X, Li X, Chen X Y, Tang H Q, Liu X H, Wang C Y, Ma J M. Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare Metals, 2023, 42(3): 740–750

    Article  CAS  Google Scholar 

  28. Wu B, Huang L, Yan L, Gang H, Cao Y, Wei D, Wang H, Guo Z, Zhang W. Boron-modulated electronic-configuration tuning of cobalt for enhanced nitric oxide fixation to ammonia. Nano Letters, 2023, 23(15): 7120–7128

    Article  CAS  PubMed  Google Scholar 

  29. Liang J, Liu P, Li Q, Li T, Yue L, Luo Y, Liu Q, Li N, Tang B, Alshehri A A, et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angewandte Chemie International Edition, 2022, 61(18): e202202087

    Article  CAS  PubMed  Google Scholar 

  30. Li P, ** Z, Fang Z, Yu G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy & Environmental Science, 2021, 14(6): 3522–3531

    Article  CAS  Google Scholar 

  31. Zhao W, Qin J, Teng W, Mu J, Chen C, Ke J, Huang J C, Liu B, Wang S. Catalytic photo-redox of simulated air into ammonia over bimetallic MOFs nanosheets with oxygen vacancies. Applied Catalysis B: Environmental, 2022, 305: 121046

    Article  CAS  Google Scholar 

  32. Watt G W, Chrisp J D. Spectrophotometric method for determination of hydrazine. Analytical Chemistry, 1952, 24(12): 2006–2008

    Article  CAS  Google Scholar 

  33. Fu M, Mao Y, Wang H, Luo W, Jiang Y, Shen W, Li M, He R. Enhancing the electrocatalytic performance of nitrate reduction to ammonia by in-situ nitrogen leaching. Chinese Chemical Letters, 2024, 35(2): 108341

    Article  CAS  Google Scholar 

  34. Sun R, Su Z H, Zhao Z F, Yang M Q, Li T S, Zhao J X, Shang Y C. Ni3S2 nanocrystals in-situ grown on Ni foam as highly efficient electrocatalysts for alkaline hydrogen evolution. Rare Metals, 2023, 42(10): 3420–3429

    Article  CAS  Google Scholar 

  35. Lu G, Gao S, Liu Q, Zhang S, Luo J, Liu X. Design of material regulatory mechanism for electrocatalytic converting NO/NO 3 to NH3 progress Nature and Science, 2023, 3(3): e20220047

    CAS  Google Scholar 

  36. Ding J, Yang H, Zhang H, Wang Z, Liu Q, Feng L, Hu G, Luo J, Liu X. Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution in alkaline seawater. International Journal of Hydrogen Energy, 2024, 53: 318–324

    Article  CAS  Google Scholar 

  37. Fang D, He F, **e J, Xue L. Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Mater. Science Edition, 2020, 35(4): 711–718

    Article  CAS  Google Scholar 

  38. Chen L N, Wang S H, Zhang P Y, Chen Z X, Lin X, Yang H J, Sheng T, Lin W F, Tian N, Sun S G, et al. Ru nanoparticles supported on partially reduced TiO2 as highly efficient catalyst for hydrogen evolution. Nano Energy, 2021, 88: 106211

    Article  CAS  Google Scholar 

  39. Tian J S, Hu Y C, Lu W F, Zhu J H, Liu X D, Shen J, Wang G, Schroers J. Dealloying of an amorphous TiCuRu alloy results in a nanostructured electrocatalyst for hydrogen evolution reaction. Carbon Energy, 2023, 5(8): e322

    Article  CAS  Google Scholar 

  40. Gupta S, Zhao S, Wang X X, Hwang S, Karakalos S, Devaguptapu S V, Mukherjee S, Su D, Xu H, Wu G. Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn do** in stabilizing carbon. ACS Catalysis, 2017, 7(12): 8386–8393

    Article  CAS  Google Scholar 

  41. Fan M Y, Wang J J, Zhao J, Zhang H, Ma T Y, Han X P, Hu W B. High-entropy oxide-supported platinum nanoparticles for efficient hydrogen evolution reaction. Rare Metals, 2024, 43(4): 1537–1546

    Article  CAS  Google Scholar 

  42. Chen C, Li S, Zhu X, Bo S, Cheng K, He N, Qiu M, **e C, Song D, Liu Y, et al. Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy, 2023, 5(10): e345

    Article  CAS  Google Scholar 

  43. Zhang C, Xu H, Wang Y, An M, Wang Y, Yuan Z, Zhang W, Li C, Guo M, Su D. Reduction of 4-nitrophenol with nanogold@ graphene composite porous material. China Powder Science and Technology, 2023, 29(4): 80–93

    Google Scholar 

  44. Chen K, **ang J, Guo Y, Liu X, Li X, Chu K. Pd1Cu single-atom alloys for high-current-density and durable NO-to-NH3 electroreduction. Nano Letters, 2024, 24(2): 541–548

    Article  PubMed  Google Scholar 

  45. Qin Y, Cao H, Liu Q, Yang S, Feng X, Wang H, Lian M, Zhang D, Wang H, Luo J, et al. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting. Frontiers of Chemical Science and Engineering, 2023, 18(1): 6

    Article  Google Scholar 

  46. Zhang L, Liang J, Wang Y, Mou T, Lin Y, Yue L, Li T, Liu Q, Luo Y, Li N, et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angewandte Chemie International Edition, 2021, 60(48): 25263–25268

    Article  CAS  PubMed  Google Scholar 

  47. Liang J, Chen H, Mou T, Zhang L, Lin Y, Yue L, Luo Y, Liu Q, Li N, Alshehri A A, et al. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(12): 6454–6462

    Article  CAS  Google Scholar 

  48. Mou T, Liang J, Ma Z, Zhang L, Lin Y, Li T, Liu Q, Luo Y, Liu Y, Gao S, et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(43): 24268–24275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 22075211) and Guangxi Natural Science Fund for Distinguished Young Scholars (2024GXNSFFA010008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeyu Wu, Junyang Ding or **jun Liu.

Ethics declarations

The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Hou, T., Liu, W. et al. Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries. Front. Chem. Sci. Eng. 18, 101 (2024). https://doi.org/10.1007/s11705-024-2452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2452-y

Keywords

Navigation