Log in

Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Layered double hydroxides have demonstrated great potential for the oxygen evolution reaction, which is a crucial half-reaction of overall water splitting. However, it remains challenging to apply layered double hydroxides in other electrochemical reactions with high efficiency and stability. Herein, we report two-dimensional multifunctional layered double hydroxides derived from metal-organic framework sheet precursors supported by nanoporous gold with high porosity, which exhibit appealing performances toward oxygen/hydrogen evolution reactions, hydrazine oxidation reaction, and overall hydrazine splitting. The as-prepared catalyst only requires an overpotential of 233 mV to reach 10 mA·cm−2 toward oxygen evolution reaction. The overall hydrazine splitting cell only needs a cell voltage of 0.984 V to deliver 10 mA·cm−2, which is far more superior than that of the overall water splitting system (1.849 V). The appealing performances of the catalyst can be contributed to the synergistic effect between the metal components of the layered double hydroxides and the supporting effect of the nanoporous gold substrate, which could endow the sample with high surface area and excellent conductivity, resulting in superior activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Han A, Wang B, Kumar A, Qin Y, ** J, Wang X, Yang C, Dong B, Jia Y, Liu J, et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods, 2019, 3(9): 1800471

    Article  Google Scholar 

  2. Wang H F, Chen L, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49(5): 1414–1448

    Article  CAS  PubMed  Google Scholar 

  3. Kang Y, Cretu O, Kikkawa J, Kimoto K, Nara H, Nugraha A S, Kawamoto H, Eguchi M, Liao T, Sun Z, et al. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nature Communications, 2023, 14(1): 4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Wang B, Bian Y, Dai L. Enhancing photocatalytic activity of graphitic carbon nitride by codo** with P and C for efficient hydrogen generation. ACS Applied Materials & Interfaces, 2017, 9(26): 21730–21737

    Article  CAS  Google Scholar 

  5. Wang H, Bian Y, Hu J, Dai L. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Applied Catalysis B: Environmental, 2018, 238: 592–598

    Article  CAS  Google Scholar 

  6. Zhang Q, Lian K, Liu Q, Qi G, Zhang S, Luo J, Liu X. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. Journal of Colloid and Interface Science, 2023, 646: 844–854

    Article  CAS  PubMed  Google Scholar 

  7. Zhao C X, Liu J N, Wang J, Ren D, Li B Q, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50(13): 7745–7778

    Article  CAS  PubMed  Google Scholar 

  8. Liu W, Zheng D, Deng T, Chen Q, Zhu C, Pei C, Li H, Wu F, Shi W, Yang S W, et al. Boosting electrocatalytic activity of 3d-block metal (hydro)oxides by ligand-induced conversion. Angewandte Chemie International Edition, 2021, 60(19): 10614–10619

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Zhang S, Liu Q, Yu P, Luo J, Hu G, Liu X. CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. Inorganic Chemistry Communications, 2022, 146: 110170

    Article  CAS  Google Scholar 

  10. Santos M P S, Hanak D P. Carbon capture for decarbonisation of energy-intensive industries: a comparative review of technoeconomic feasibility of solid loo** cycles. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1291–1317

    Article  Google Scholar 

  11. Cao H, Wei T, Liu Q, Zhang S, Qin Y, Wang H, Luo J, Liu X. Hollow carbon cages derived from polyoxometalate-encapsuled metal-organic frameworks for energy-saving hydrogen production. ChemCatChem, 2023, 15(5): e202201615

    Article  CAS  Google Scholar 

  12. Shen H, Wei T, Liu Q, Zhang S, Luo J, Liu X. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. Journal of Colloid and Interface Science, 2023, 634: 730–736

    Article  CAS  PubMed  Google Scholar 

  13. Wei T, Liu W, Zhang S, Liu Q, Luo J, Liu X. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chemical Communications, 2023, 59(4): 442–445

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Qi G, Liu W, Zhang S, Liu Q, Luo J, Liu X. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution. Inorganic Chemistry Frontiers, 2023, 10(8): 2423–2429

    Article  CAS  Google Scholar 

  15. Liu H, Liu Y, Li M, Liu X, Luo J. Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Materials Today. Advances, 2020, 7: 100083

    Article  Google Scholar 

  16. Wei T, Meng G, Zhou Y, Wang Z, Liu Q, Luo J, Liu X. Amorphous Fe-Co oxide as an active and durable bifunctional catalyst for the urea-assisted H2 evolution reaction in seawater. Chemical Communications, 2023, 59(66): 9992–9995

    Article  CAS  PubMed  Google Scholar 

  17. Jiang Z, Li Z, Qin Z, Sun H, Jiao X, Chen D. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale, 2013, 5(23): 11770–11775

    Article  CAS  PubMed  Google Scholar 

  18. Zhou L, Shao M, Wei M, Duan X. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26(6): 1094–1106

    Article  Google Scholar 

  19. Zhao Y, Waterhouse G I N, Chen G, **ong X, Wu L Z, Tung C H, Zhang T. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48(7): 1972–2010

    Article  CAS  PubMed  Google Scholar 

  20. Zhou D, Cai Z, Jia Y, ** for efficient and durable oxygen evolution reaction. Nanoscale Horizons, 2018, 3(5): 532–537

    Article  CAS  PubMed  Google Scholar 

  21. Zhou D, Li P, Lin X, Mckinley A, Kuang Y, Liu W, Lin W F, Sun X, Duan X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews, 2021, 50(15): 8790–8817

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Zhang L, **ang X, Yan D, Li F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13250–13258

    Article  CAS  Google Scholar 

  23. Tang Y, Wang R, Yang Y, Yan D, **ang X. Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Applied Materials & Interfaces, 2016, 8(30): 19446–19455

    Article  CAS  Google Scholar 

  24. Tang Y, Fang X, Zhang X, Fernandes G, Yan Y, Yan D, **ang X, He J. Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Applied Materials & Interfaces, 2017, 9(42): 36762–36771

    Article  CAS  Google Scholar 

  25. Sun H, Chen L, Lian Y, Yang W, Lin L, Chen Y, Xu J, Wang D, Yang X, Rummerli M H, et al. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation. Advanced Materials, 2020, 32(52): 2006784

    Article  Google Scholar 

  26. Zhang J, Yu L, Chen Y, Lu X F, Gao S, Lou X W D. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Advanced Materials, 2020, 32(16): 1906432

    Article  CAS  Google Scholar 

  27. Qin Y, Wang B, Qiu Y, Liu X, Qi G, Zhang S, Han A, Luo J, Liu J. Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction. Chemical Communications, 2021, 57(22): 2752–2755

    Article  CAS  PubMed  Google Scholar 

  28. Kang Y, Tang Y, Zhu L, Jiang B, Xu X, Guselnikova O, Li H, Asahi T, Yamauchi Y. Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catalysis, 2022, 12(23): 14773–14793

    Article  CAS  Google Scholar 

  29. Patel D A, Weller A M, Chevalier R B, Karos C A, Landis E C. Ordering and defects in self-assembled monolayers on nanoporous gold. Applied Surface Science, 2016, 387: 503–512

    Article  CAS  Google Scholar 

  30. Xue Y, Scaglione F, Celegato F, Denis P, Fecht H J, Rizzi P, Battezzati L. Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance. Chemical Physics Letters, 2018, 709: 46–51

    Article  CAS  Google Scholar 

  31. Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, et al. Nanoarchitectonics of metallene materials for electrocatalysis. ACS Nano, 2023, 17(14): 13017–13043

    Article  CAS  PubMed  Google Scholar 

  32. Kim S H. Nanoporous gold for energy applications. Chemical Record, 2021, 21(5): 1199–1215

    Article  CAS  PubMed  Google Scholar 

  33. Sun J S, Zhou Y T, Yao R Q, Shi H, Wen Z, Lang X Y, Jiang Q. Nanoporous gold supported chromium-doped NiFe oxyhydroxides as high-performance catalysts for the oxygen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(16): 9690–9697

    Article  CAS  Google Scholar 

  34. Tian M, Shi S, Shen Y, Yin H. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell. Electrochimica Acta, 2019, 293: 390–398

    Article  CAS  Google Scholar 

  35. Qin Y, Wang F, Shang J, Iqbal M, Han A, Sun X, Xu H, Liu J. Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Energy Chemistry, 2020, 43: 104–107

    Article  Google Scholar 

  36. Yang M, Sun J, Qin Y, Yang H, Zhang S, Liu X, Luo J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Science China Materials, 2022, 65(2): 536–542

    Article  CAS  Google Scholar 

  37. Yilmaz G, Yam K M, Zhang C, Fan H J, Ho G W. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Advanced Materials, 2017, 29(26): 1606814

    Article  Google Scholar 

  38. Yang Y, Dang L, Shearer M J, Sheng H, Li W, Chen J, **ao P, Zhang Y, Hamers R J, ** S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2018, 8(15): 1703189

    Article  Google Scholar 

  39. Burke M S, Kast M G, Trotochaud L, Smith A M, Boettcher S W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Journal of the American Chemical Society, 2015, 137(10): 3638–3648

    Article  CAS  PubMed  Google Scholar 

  40. Hao P, Dong X, Wen H, Xu R, **e J, Wang Q, Cui G, Tian J, Tang B. In-situ assembly of 2D/3D porous nickel cobalt sulfide solid solution as superior pre-catalysts to boost multi-functional electrocatalytic oxidation. Chinese Chemical Letters, 2023, 34(5): 107843

    Article  CAS  Google Scholar 

  41. Hu W, Zheng M, Duan H, Zhu W, Wei Y, Zhang Y, Pan K, Pang H. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chinese Chemical Letters, 2022, 33(3): 1412–1416

    Article  CAS  Google Scholar 

  42. Zhou X, Yang T, Li T, Zi Y, Zhang S, Yang L, Liu Y, Yang J, Tang J. In-situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting. Nano Research Energy, 2023, 2: e9120086

    Article  Google Scholar 

  43. Yang M, Meng G, Li H, Wei T, Liu Q, He J, Feng L, Sun X, Liu X. Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2,5-furandicarboxylic acid and ammonia. Journal of Colloid and Interface Science, 2023, 652: 155–163

    Article  CAS  PubMed  Google Scholar 

  44. Su Z, Huang Q, Guo Q, Hoseini S J, Zheng F, Chen W. Metal-organic framework and carbon hybrid nanostructures: fabrication strategies and electrocatalytic application for the water splitting and oxygen reduction reaction. Nano Research Energy, 2023, 2: e9120078

    Article  Google Scholar 

  45. Qi D, Liu S, Chen H, Lai S, Qin Y, Qiu Y, Dai S, Zhang S, Luo J, Liu X. Rh nanoparticle functionalized heteroatom-doped hollow carbon spheres for efficient electrocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2021, 5(7): 3125–3131

    Article  CAS  Google Scholar 

  46. Han X, Zhang L, Wang X, Song S, Zhang H. Recent progress on the synthesis and applications of high-entropy alloy catalysts. Nano Research Energy, 2023, 2: e9120084

    Article  Google Scholar 

  47. Wei H, Si J, Zeng L, Lyu S, Zhang Z, Suo Y, Hou Y. Electrochemically exfoliated Ni-doped MoS2 nanosheets for highly efficient hydrogen evolution and Zn-H2O battery. Chinese Chemical Letters, 2023, 34(1): 107144

    Article  CAS  Google Scholar 

  48. Wang T, Gao S, Wei T, Qin Y, Zhang S, Ding J, Liu Q, Luo J, Liu X. Co nanoparticles confined in mesoporous Mo/N Co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction. Chemistry, 2023, 29(23): e202204034

    Article  CAS  PubMed  Google Scholar 

  49. Chen M, Kitiphatpiboon N, Feng C, Abudula A, Ma Y, Guan G. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience, 2023, 3(2): 100111

    Article  Google Scholar 

  50. Chen L, Deng R, Guo S, Yu Z, Yao H, Wu Z, Shi K, Li H, Ma S. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(1): 102–115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51971157 and 22075211), Shenzhen Science and Technology Program (Grant Nos. JCYJ20210324115412035, JCYJ20210324123202008, JCYJ20210324 122803009 and ZDSYS20210813095534001), Guangdong Foundation for Basic and Applied Basic Research Program (Grant No. 2021A1515110880).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Luo or **jun Liu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Cao, H., Liu, Q. et al. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting. Front. Chem. Sci. Eng. 18, 6 (2024). https://doi.org/10.1007/s11705-023-2373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-023-2373-1

Keywords

Navigation