Log in

Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Designing advanced and cost-effective electro-catalytic system for nitric oxide (NO) reduction reaction (NORR) is vital for sustainable NH3 production and NO removal, yet it is a challenging task. Herein, it is shown that phosphorus (P)-doped titania (TiO2) nanotubes can be adopted as highly efficient catalyst for NORR. The catalyst demonstrates impressive performance in ionic liquid (IL)-based electrolyte with a remarkable high Faradaic efficiency of 89% and NH3 yield rate of 425 µg·h−1·mgcat.1, being close to the best-reported results. Noteworthy, the obtained performance metrics are significantly larger than those for N2 reduction reaction. It also shows good durability with negligible activity decay even after 10 cycles. Theoretical simulations reveal that the introduction of P dopants tunes the electronic structure of Ti active sites, thereby enhancing the NO adsorption and facilitating the desorption of *NH3. Moreover, the utilization of IL further suppresses the competitive hydrogen evolution reaction. This study highlights the advantage of the catalyst—electrolyte engineering strategy for producing NH3 at a high efficiency and rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293–296

    Article  CAS  PubMed  Google Scholar 

  2. Liang J, Liu Q, Alshehri A, Sun X. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Research Energy, 2022, 1: e9120010

    Article  Google Scholar 

  3. Siddharth K, Wang Y, Wang J, **ao F, Nambafu G, Shahid U, Yang F, Delmo E, Shao M. Platinum on nitrogen doped graphene and tungsten carbide supports for ammonia electro-oxidation reaction. Frontiers of Chemical Science and Engineering, 2022, 16(6): 930–938

    Article  CAS  Google Scholar 

  4. Dai Y, **ong Y. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Research Energy, 2022, 1: e9120006

    Article  Google Scholar 

  5. Xu C, Huang J, Ma J. Green, cheap and rechargeable Al-N2 battery with efficient N2 fixation. Rare Metals, 2021, 40(1): 1–2

    Article  Google Scholar 

  6. Liu Y, Wang J, Zhang J, Qi T, Chu G, Zou H, Sun B. NOx removal by non-thermal plasma reduction: experimental and theoretical investigations. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1476–1484

    Article  CAS  Google Scholar 

  7. Cao N, Chen Z, Zang K, Xu J, Zhong J, Luo J, Xu X, Zheng G. Do** strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nature Communications, 2019, 10(1): 2877

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bao D, Zhang Q, Meng F L, Zhong H X, Shi M M, Zhang Y, Yan J M, Jiang Q, Zhang X B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Advanced Materials, 2017, 29(3): 1604799

    Article  Google Scholar 

  9. Xu T, Liang J, Yue L, Liu Q, Li T, Zhao H, Luo Y, Lu S, Sun X. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Physico-Chimica Sinica, 2021, 37(7): 2009043 (in Chinese)

    Google Scholar 

  10. Wang J, Ding W, Wei Z. Performance of polymer electrolyte membrane fuel cells at ultra-low platinum loadings. Acta Physico-Chimica Sinica, 2021, 37(9): 2009094 (in Chinese)

    Google Scholar 

  11. Long J, Chen S, Zhang Y, Guo C, Fu X, Deng D, **ao J. Direct electrochemical ammonia synthesis from nitric oxide. Angewandte Chemie International Edition, 2020, 59(24): 9711–9718

    Article  CAS  PubMed  Google Scholar 

  12. Peng X, Mi Y, Bao H, Liu Y, Qi D, Qiu Y, Zhuo L, Zhao S, Sun J, Tang X, Luo J, Liu X. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy, 2020, 78: 105321

    Article  CAS  Google Scholar 

  13. Yao Y, Wang J, Shahid U B, Gu M, Wang H, Li H, Shao M. Electrochemical synthesis of ammonia from nitrogen under mild conditions: current status and challenges. Electrochemical Energy Reviews, 2020, 3(2): 239–270

    Article  CAS  Google Scholar 

  14. Chen J, Zhang W, Li H, Li W, Zhao D. Recent advances in TiO2-based catalysts for N2 reduction reaction. Sustainable Materials, 2021, 1(2): 174–193

    CAS  Google Scholar 

  15. Hong Q, Li T, Zheng S, Chen H, Chu H, Xu K, Li S, Mei Z, Zhao Q, Ren W, Zhao W-G, Pan F. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chinese Journal of Structural Chemistry, 2021, 40(4): 519–526

    CAS  Google Scholar 

  16. Kong Y, Li Y, Sang X, Yang B, Li Z, Zheng S, Zhang Q, Yao S, Yang X, Lei L, Zhou S, Wu G, Hou Y. Atomically dispersed zinc(I) active sites to accelerate nitrogen reduction kinetics for ammonia electrosynthesis. Advanced Materials, 2022, 34(2): 2103548

    Article  CAS  Google Scholar 

  17. Li Y, Li J, Huang J, Chen J, Kong Y, Yang B, Li Z, Lei L, Chai G, Wen Z, Dai L, Hou Y. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angewandte Chemie International Edition, 2021, 60(16): 9078–9085

    Article  CAS  PubMed  Google Scholar 

  18. Manjunatha R, Karajic A, Liu M, Zhai Z, Dong L, Yan W, Wilkinson D P, Zhang J. A review of composite/hybrid electrocatalysts and photocatalysts for Nitrogen reduction reactions: advanced materials, mechanisms, challenges and perspectives. Electrochemical Energy Reviews, 2020, 3(3): 506–540

    Article  CAS  Google Scholar 

  19. Liang J, Liu P, Li Q, Li T, Yue L, Luo Y, Liu Q, Li N, Tang B, Alshehri A, Shakir I, Agboola P O, Sun C, Sun X. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angewandte Chemie International Edition, 2022, 61(18): e202202087

    Article  CAS  PubMed  Google Scholar 

  20. Du L, **ng L, Zhang G, Liu X, Rawach D, Sun S. Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis. SusMat, 2021, 1(2): 150–173

    Article  CAS  Google Scholar 

  21. Zhang L, Liang J, Wang Y, Mou T, Lin Y, Yue L, Li T, Liu Q, Luo Y, Li N, Tang B, Liu Y, Gao S, Alshehri A A, Guo X, Ma D, Sun X. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angewandte Chemie International Edition, 2021, 60(48): 25263–25268

    Article  CAS  PubMed  Google Scholar 

  22. Hou J, Peng X, Sun J, Zhang S, Liu Q, Wang X, Luo J, Liu X. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorganic Chemistry Frontiers, 2022, 9(12): 3047–3058

    Article  CAS  Google Scholar 

  23. Zhang F, **e K. Porous iron- and cobalt-based single crystals with enhanced electrocatalysis performance. Chinese Journal of Structural Chemistry, 2021, 40(1): 61–69

    Google Scholar 

  24. Wang X, Liu S, Zhang H, Zhang S, Meng G, Liu Q, Sun Z, Luo J, Liu X. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chemical Communications, 2022, 58(55): 7654–7657

    Article  CAS  PubMed  Google Scholar 

  25. Wang G, Shen P, Luo Y, Li X, Li X, Chu K. A vacancy engineered MnO2−x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Transactions, 2022, 51(24): 9206–9212

    Article  CAS  PubMed  Google Scholar 

  26. Luo Y, Li Q, Tian Y, Liu Y, Chu K. Amorphization engineered VSe2−x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(4): 1742–1749

    Article  CAS  Google Scholar 

  27. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Advanced Materials, 1999, 11(15): 1307–1311

    Article  CAS  Google Scholar 

  28. Zhao X, Zhuo D, Chen Q, Guo G. Enhancing electrochemical reduction of CO2 to formate by regulating the support morphology. Chinese Journal of Structural Chemistry, 2021, 40(3): 376–382

    CAS  Google Scholar 

  29. Liu D, Li H, Gao R, Zhao Q, Yang Z, Gao X, Wang Z, Zhang F, Wu W. Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO2 photoelectrode. Journal of Hazardous Materials, 2021, 406: 124309

    Article  CAS  PubMed  Google Scholar 

  30. Wei Z, Wang J, Guo S, Tan S. Towards highly salt-rejecting solar interfacial evaporation: photothermal materials selection, structural designs, and energy management. Nano Research Energy, 2022, 1: e9120014

    Article  Google Scholar 

  31. Wang K, Yu J, Liu L, Hou L, ** F. Hierarchical P-doped TiO2 nanotubes array@Ti plate: towards advanced CO2 photocatalytic reduction catalysts. Ceramics International, 2016, 42(14): 16405–16411

    Article  CAS  Google Scholar 

  32. Guan Z, Zou K, Wang X, Deng Y, Chen G. The synergistic effect of P-do** and carbon coating for boosting electrochemical performance of TiO2 nanospheres for sodium-ion batteries. Chinese Chemical Letters, 2021, 32(12): 3847–3851

    Article  CAS  Google Scholar 

  33. Meng L, Li L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Research Energy, 2022, 1: e9120020

    Article  Google Scholar 

  34. Liu D, Zeng Q, Hu C, Chen D, Liu H, Han Y, Xu L, Zhang Q, Yang J. Light do** of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Research Energy, 2022, 1: e9120017

    Article  Google Scholar 

  35. Liu S, ** M, Sun J, Qin Y, Gao S, Chen Y, Zhang S, Luo J, Liu X. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chemical Engineering Journal, 2022, 437: 437

    Article  Google Scholar 

  36. Zhang S, Gao X T, Hou P F, Zhang T R, Kang P. Nitrogen-doped Zn-Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Metals, 2021, 40(11): 3117–3124

    Article  CAS  Google Scholar 

  37. Gao X, Li J, Zuo Z. Advanced electrochemical energy storage and conversion on graphdiyne interface. Nano Research Energy, 2022, 1: e9120036

    Article  Google Scholar 

  38. Seyedhosein P, Florian S, Andrey M, Aleksandr K, Torsten B. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Research Energy, 2022, 1: e9120016

    Article  Google Scholar 

  39. Meng G, Wei T, Liu W, Li W, Zhang S, Liu W, Liu Q, Bao H, Luo J, Liu X. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chemical Communications, 2022, 58(58): 8097–8100

    Article  CAS  PubMed  Google Scholar 

  40. Qi D, Lv F, Wei T, ** M, Meng G, Zhang S, Liu Q, Liu W, Ma D, Hamdy M S, Luo J, Liu X. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Research Energy, 2022, 1: e9120022

    Article  Google Scholar 

  41. Li L, Hasan I, Farwa, He R, Peng L, Xu N, Niazi N, Zhang J, Qiao J. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: a review. Nano Research Energy, 2022, 1: e9120015

    Google Scholar 

  42. Meng G, ** M, Wei T, Liu Q, Zhang S, Peng X, Luo J, Liu X. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Research, 2022, 15(10): 8890–8896

    Article  CAS  Google Scholar 

  43. Zhang H, Luo Y, Chu P K, Liu Q, Liu X, Zhang S, Luo J, Wang X, Hu G. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. Journal of Alloys and Compounds, 2022, 922: 166113

    Article  CAS  Google Scholar 

  44. Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small, 2022, 18(52): 2204524

    Article  CAS  Google Scholar 

  45. Wang Z, Pu Y, Wang D, Wang J X, Chen J F. Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals. Frontiers of Chemical Science and Engineering, 2018, 12(4): 855–866

    Article  CAS  Google Scholar 

  46. Jiang L, Dong D, Lu Y. Design strategies for low temperature aqueous electrolytes. Nano Research Energy, 2022, 1: e9120003

    Article  Google Scholar 

  47. Reverberi A P, Varbanov P S, Vocciante M, Fabiano B. Bismuth oxide-related photocatalysts in green nanotechnology: a critical analysis. Frontiers of Chemical Science and Engineering, 2018, 12(4): 878–892

    Article  CAS  Google Scholar 

  48. Liu W, Feng J, Wei T, Liu Q, Zhang S, Luo Y, Luo J, Liu X. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Research, 2022, in press

  49. Guo F, Zhang M, Yi S, Li X, **n R, Yang M, Liu B, Chen H, Li H, Liu Y. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Research Energy, 2022, 1: e9120027

    Article  Google Scholar 

  50. Zhang K, Liang X, Wang L, Sun K, Wang Y, **e Z, Wu Q, Bai X, Hamdy M, Chen H, Zou X. Status and perspectives of key materials for PEM electrolyzer. Nano Research Energy, 2022, 1: e9120032

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 22075211, 21601136, and 21905246) and the Key Projects of Zhejiang Natural Science Foundation (Grant No. LZ20E010001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingmin You, Qingcheng Zhang or **jun Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, Q., Tang, X. et al. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Front. Chem. Sci. Eng. 17, 726–734 (2023). https://doi.org/10.1007/s11705-022-2274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2274-8

Keywords

Navigation