Log in

Simultaneous quantification of 60 elements associated with dried red peppers by ICP for routine analysis

  • Original Research
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, ICP-OES and ICP-MS analyses were performed using inorganic elements. We quantified 60 inorganic elements and set specific processes, methods, equipment or systems between experiments in ICP-OES and ICP-MS equipment to consistently derive results that meet the criteria. The relative standard deviation (RSD) was mostly less than 8%. The accuracy precision, linearity, limit of quantity detection (LOD) and limit of quantity (LOQ) of the experimental method were evaluated. The limit of detection (LOD) of ICP-OES was in the range of 0.024–1.505 mg/kg, and the limit of quantification (LOQ) was 0.081–4.967 mg/kg. The limit of detection (LOD) of ICP-MS was 0.001–1.425 µg/kg, and the limit of quantification (LOQ) was 0.003–4.703 µg/kg. In addition, monitoring of 64 domestic and 51 imported dried red pepper using 60 elements was conducted for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Akpinar-Bayizit, M.A. Turan, L. Yilmaz-Ersan, N. Taban, Inductively coupled plasma Optical-Emission Spectroscopy determination of Major and minor elements in vinegar. 2010, 5

  2. D. Alexander, A. Rohman, ANALYTICAL METHOD VALIDATION OF ICP-AES FOR ANALYSIS OF CADMIUM, CHROMIUM, CUPRUM, MANGAN AND NICKEL IN MILK. Int. J. App Pharm. 341–344 (2019). https://doi.org/10.22159/ijap.2019v11i4.29503

  3. M. Andrade Korn das, G. da Boa Morte, E.S. Batista, dos D.C.M. Santos, J.T. Castro, J.T.P. Barbosa, A.P. Teixeira, A.P. Fernandes, B. Welz, dos W.P.C. Santos et al., ; Nunes dos Santos, E.B.G.;. Sample Preparation for the Determination of Metals in Food Samples Using Spectroanalytical Methods—A Review. Applied Spectroscopy Reviews 2008, 43, 67–92, doi:https://doi.org/10.1080/05704920701723980

  4. G.U. Chandrasiri, M.N.A. Mubarak, K. Mahatantila, K.R.R. Mahanama, Single Laboratory Validation of Determination of 13 Trace Elements in Rice by ICP-MS with an Overview of Challenges Encountered. AJAC 2019, 10, 367–376, doi:https://doi.org/10.4236/ajac.2019.109025

  5. J. Costa, R. Rodríguez, E. Garcia-Cela, A. Medina, N. Magan, N. Lima, P. Battilani, C. Santos, Overview of Fungi and mycotoxin contamination in Capsicum Pepper and in its derivatives. Toxins. 11, 27 (2019). https://doi.org/10.3390/toxins11010027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A.A. D’Archivio, M. Foschi, R. Aloia, M.A. Maggi, L. Rossi, F. Ruggieri, Geographical discrimination of Red Garlic (Allium Sativum L.) produced in Italy by Means of Multivariate Statistical Analysis of ICP-OES Data. Food Chem. 275, 333–338 (2019). https://doi.org/10.1016/j.foodchem.2018.09.088

    Article  CAS  PubMed  Google Scholar 

  7. A.R. Date, A.L. Gray (eds.), ; Blackie u.a: Glasgow u.a, 1989; ISBN 978-0-216-92488-8

  8. D.J. Douglas, J.B. French, Elemental analysis with a Microwave-Induced Plasma/Quadrupole Mass Spectrometer System. Anal. Chem. 53, 37–41 (1981). https://doi.org/10.1021/ac00224a011

    Article  CAS  Google Scholar 

  9. European Environment Agency, 2007. https://www.eea.europa.eu/data-and-maps/indicators/#c5=&c7=all&c0=10&b_start=0&c6=progress+in+management+of+contaminated+sites. Accessed 28 May 2013

  10. J. Galani, M. Houbraken, A. Wumbei, J. Djeugap, D. Fotio, P. Spanoghe, Evaluation of 99 pesticide residues in Major Agricultural Products from the western Highlands Zone of Cameroon using QuEChERS method extraction and LC-MS/MS and GC-ECD analyses. Foods. 7, 184 (2018). https://doi.org/10.3390/foods7110184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G. Habte, I.M. Hwang, J.S. Kim, J.H. Hong, Y.S. Hong, J.Y. Choi, E.Y. Nho, N. Jamila, N. Khan, K.S. Kim, Elemental profiling and geographical differentiation of ethiopian coffee samples through inductively coupled plasma-optical Emission Spectroscopy (ICP-OES), ICP-Mass Spectrometry (ICP-MS) and direct Mercury Analyzer (DMA). Food Chem. 212, 512–520 (2016). https://doi.org/10.1016/j.foodchem.2016.05.178

    Article  CAS  PubMed  Google Scholar 

  12. R.S. Houk, V.A. Fassel, G.D. Flesch, H.J. Svec, A.L. Gray, C.E. Taylor, Inductively coupled argon plasma as an Ion source for Mass Spectrometric determination of Trace Elements. Anal. Chem. 52, 2283–2289 (1980). https://doi.org/10.1021/ac50064a012

    Article  CAS  Google Scholar 

  13. I.M. Hwang, E.W. Moon, H.-W. Lee, N. Jamila, K.S. Kim, J.H. Ha, S.H. Kim, Discrimination of Chili Powder Origin using inductively coupled Plasma-Mass Spectrometry (ICP-MS), inductively coupled plasma-optical Emission Spectroscopy (ICP-OES), and Near Infrared (NIR) Spectroscopy. Anal. Lett. 52, 932–947 (2019). https://doi.org/10.1080/00032719.2018.1508293

    Article  CAS  Google Scholar 

  14. S.-H. Ji, J.-H. Kang, G.-S. Jo, S. Lee, H.-R. Kim, Y. Choi, Y.-S. Lee, Comparison of Ash and Mineral contents in local Agricultural Products. Korean J. Food Nutr. 29, 1015–1022 (2016). https://doi.org/10.9799/KSFAN.2016.29.6.1015

    Article  Google Scholar 

  15. R,G. John, E.T. Howard, Trace Analysis. Academic Press: New York (1985). ISBN 0-12-682104-6

  16. Y. Kim, W. Ra, S. Cho, S. Choi, B. Soh, Y. Joo, K.-W. Lee, Method validation for determination of thallium by inductively coupled plasma Mass Spectrometry and monitoring of various Foods in South Korea. Molecules. 26, 6729 (2021). https://doi.org/10.3390/molecules26216729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Luo, H. Du, H. Kebede, Y. Liu, F. **ng, Contamination status of Major Mycotoxins in Agricultural Product and Food Stuff in Europe. Food Control. 127, 108120 (2021). https://doi.org/10.1016/j.foodcont.2021.108120

    Article  CAS  Google Scholar 

  18. M. Malandrino, O. Abollino, S. Buoso, A. Giacomino, La C. Gioia, E. Mentasti, Accumulation of Heavy Metals from contaminated soil to plants and evaluation of Soil Remediation by Vermiculite. Chemosphere. 82, 169–178 (2011). https://doi.org/10.1016/j.chemosphere.2010.10.028

    Article  CAS  PubMed  Google Scholar 

  19. A.F. Mankoula, W. Tawfik, J.E. Gagnon, B.J. Fryer, F. El-Mekawy, M.E. Shaheen, ICMMS-2: Assessment of Heavy Metals Content in the Agricultural Soils of Kafr El-Zayat Egypt using laser ablation inductively coupled plasma Mass Spectrometry and inductively coupled plasma Optical Emission Spectroscopy. Egypt. J. Chem. 0, 0–0 (2021). https://doi.org/10.21608/ejchem.2021.55867.3185

    Article  Google Scholar 

  20. N. Manousi, E. Isaakidou, G.A. Zachariadis, An inductively coupled plasma Optical Emission Spectrometric Method for the determination of toxic and nutrient metals in spices after pressure-assisted digestion. Appl. Sci. 12, 534 (2022). https://doi.org/10.3390/app12020534

    Article  CAS  Google Scholar 

  21. N. Manousi, G.A. Zachariadis, Development and application of an ICP-AES Method for the determination of nutrient and toxic elements in savory snack products after Autoclave Dissolution. Separations. 7, 66 (2020). https://doi.org/10.3390/separations7040066

    Article  CAS  Google Scholar 

  22. F. Menichini, R. Tundis, M. Bonesi, M. Loizzo, F. Conforti, G. Statti, B. Decindio, P. Houghton, F. Menichini, The influence of Fruit ripening on the Phytochemical Content and Biological Activity of Capsicum Chinense Jacq. Cv Habanero. Food Chem. 114, 553–560 (2009). https://doi.org/10.1016/j.foodchem.2008.09.086

    Article  CAS  Google Scholar 

  23. E. Moreno-Jiménez, J.M. Peñalosa, R. Manzano, R.O. Carpena-Ruiz, R. Gamarra, E. Esteban, Heavy Metals distribution in Soils surrounding an Abandoned Mine in NW Madrid (Spain) and their transference to Wild Flora. J. Hazard. Mater. 162, 854–859 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.109

    Article  CAS  PubMed  Google Scholar 

  24. A. Naccarato, E. Furia, G. Sindona, A. Tagarelli, Multivariate class modeling techniques Applied to Multielement Analysis for the Verification of the geographical origin of Chili Pepper. Food Chem. 206, 217–222 (2016). https://doi.org/10.1016/j.foodchem.2016.03.072

    Article  CAS  PubMed  Google Scholar 

  25. G. Oboh, J.B.T. Rocha, DISTRIBUTION AND ANTIOXIDANT ACTIVITY OF, POLYPHENOLS IN RIPE AND UNRIPE TREE PEPPER (CAPSICUM PUBESCENS), J. Food Biochemistry. 31, 456–473 (2007). https://doi.org/10.1111/j.1745-4514.2007.00123.x

    Article  CAS  Google Scholar 

  26. S. Ohashi, Development and validation of an ICP-MS method for simultaneous determination of selected metals in electronic cigarette aerosol. Beiträge zur Tabakforschung International/Contributions to Tobacco Research. 28, 2–13 (2018). https://doi.org/10.2478/cttr-2018-0002

    Article  CAS  Google Scholar 

  27. J. Ornelas-Paz, de J. Martínez-Burrola, J.M. Ruiz-Cruz, S. Santana-Rodríguez, V. Ibarra-Junquera, V. Olivas, G.I. Pérez-Martínez, Effect of cooking on the Capsaicinoids and Phenolics contents of mexican peppers. Food Chem. 119, 1619–1625 (2010). https://doi.org/10.1016/j.foodchem.2009.09.054

    Article  CAS  Google Scholar 

  28. T.B. Reed, Induction-coupled plasma torch. J. Appl. Phys. 32, 821–824 (1961). https://doi.org/10.1063/1.1736112

    Article  CAS  Google Scholar 

  29. S.M. Rodrigues, M.E. Pereira, A.C. Duarte, P.F.A.M. Römkens, Soil–plant–animal transfer models to Improve Soil Protection Guidelines: a Case Study from Portugal. Environ. Int. 39, 27–37 (2012). https://doi.org/10.1016/j.envint.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  30. B.K. Saleh, A. Omer, B. Teweldemedhin, Medicinal Uses and Health Benefits of Chili Pepper (Capsicum Spp.): A Review. MOJFPT 2018, 6, doi:https://doi.org/10.15406/mojfpt.2018.06.00183

  31. M. Senila, A. Drolc, A. Pintar, L. Senila, E. Levei, Validation and measurement uncertainty evaluation of the ICP-OES method for the Multi-Elemental determination of essential and nonessential elements from Medicinal plants and their aqueous extracts. J. Anal. Sci. Technol. 5 (2014). https://doi.org/10.1186/s40543-014-0037-y

  32. M. Senila, E.A. Levei, L.R. Senila, Assessment of Metals Bioavailability to vegetables under Field Conditions using DGT, single extractions and Multivariate Statistics. Chem. Cent. J. 6 (2012). https://doi.org/10.1186/1752-153X-6-119

  33. V. Silva, H.G.J. Mol, P. Zomer, M. Tienstra, C.J. Ritsema, V. Geissen, Pesticide residues in european agricultural soils – A hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.441

    Article  CAS  PubMed  Google Scholar 

  34. M. Tan, Validation and quantitative analysis of Cadmium, Chromium, Copper, Nickel, and lead in Snake Fruit by inductively coupled plasma-atomic Emission Spectroscopy. J. App Pharm. Sci. (2018). https://doi.org/10.7324/JAPS.2018.8206

    Article  Google Scholar 

  35. Å. Tokalıoğlu, F.K. Dokan, S.I.C.P.-M.S. Köprü, Multi-Element, Analysis for Determining the Origin by Multivariate Analysis of Red Pepper Flakes from Three Different Regions of Turkey. LWT 2019, 103, 301–307, doi:https://doi.org/10.1016/j.lwt.2019.01.015

  36. R.H. Wendt, V.A. Fassel, Induction-coupled plasma spectrometric excitation source. Anal. Chem. 37, 920–922 (1965). https://doi.org/10.1021/ac60226a003

    Article  CAS  Google Scholar 

  37. Y. Zhao, B. Zhang, G. Chen, A. Chen, S. Yang, Z. Ye, Tracing the Geographic Origin of Beef in China on the basis of the combination of stable isotopes and Multielement Analysis. J. Agric. Food Chem. 61, 7055–7060 (2013). https://doi.org/10.1021/jf400947y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho ** Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, S.H., Kim, H., Kim, YK. et al. Simultaneous quantification of 60 elements associated with dried red peppers by ICP for routine analysis. Food Measure 17, 5185–5194 (2023). https://doi.org/10.1007/s11694-023-01969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01969-7

Keywords

Navigation