Log in

Jetting-Out Phenomenon Associated with Bonding of Warm-Sprayed Titanium Particles onto Steel Substrate

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Titanium powder particles accelerated and simultaneously heated by the supersonic gas flow were deposited onto steel substrate by the warm spraying process. The sprayed particles were heavily deformed and bonded to the substrate in solid state. Especially, all the deposited particles showed jetting-out of materials out of the particle-substrate interface triggered by the adiabatic shear instability known to occur under such shock impact conditions. High-magnified images showed that grain refinement occurred in the jetting-out region by dynamic recrystallization. Furthermore, the elemental analysis using the electron energy loss spectrum showed jetting-outs of the substrate as well as the particle. Numerical simulation based on the Johnson-Cook plastic deformation model showed that the jetting-out phenomenon commences about 10 ns after the initial contact of the particle with the substrate and at a position away from the center bottom of particle, where the highest compressive stress is experienced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564

    Article  CAS  ADS  Google Scholar 

  2. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  CAS  ADS  Google Scholar 

  3. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  CAS  Google Scholar 

  4. T.V. Steenkiste and J.R. Smith, Evaluation of Coatings Produced via Kinetic and Cold Spray Processes, J. Therm. Spray Technol., 2004, 13(2), p 274-282

    Article  ADS  Google Scholar 

  5. C. Borchers, F. Gärtner, T. Stoltenhoff, and H. Kreye, Microstructural Bonding Features of Cold Sprayed Face Centered Cubic Metals, J. Appl. Phys., 2003, 93(8), p 4288-4292

    Google Scholar 

  6. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  CAS  Google Scholar 

  7. T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272

    Article  CAS  ADS  Google Scholar 

  8. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  CAS  Google Scholar 

  9. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007

    Google Scholar 

  10. V.K. Champagne, The Cold Spray Materials Deposition Process, Woodhead Publishing/CRC Press, Cambridge, 2007

    Google Scholar 

  11. S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on the High-Velocity Impact of Solid Particles, Sci. Technol. Adv. Mater., 2008, 9(3), 033002 (17 pp)

    Article  Google Scholar 

  12. J. Kawakita, S. Kuroda, T. Fukushima, H. Katanoda, K. Matsuo, and H. Fukanuma, Dense Titanium Coatings by Modified HVOF Spraying, Surf. Coat. Technol., 2006, 201(3-4), p 1250-1255

    Article  CAS  Google Scholar 

  13. K.H. Kim, M. Watanabe, J. Kawakita, S. Kuroda, Effects of Temperature of In-flight Particles on Bonding and Microstructure in Warm Sprayed Titanium Deposits, J. Therm. Spray Technol., 2009, 18(3), p 392-400

    Article  CAS  Google Scholar 

  14. S.W. Kieffer, Droplet Chondrules: Jetting on High-Velocity Collision of Small Meteoritic Particles May Have Produced Droplet Chondrules, Science, 1975, 189(4200), p 333-340

    Article  PubMed  ADS  Google Scholar 

  15. K.H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scripta Mater., 2008, 59(7), p 768-771

    Article  CAS  Google Scholar 

  16. K.H. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High Resolution Electron Microscopy, J. Phys. D: Appl. Phys., 2009, 42, 065304 (5 pp)

    Article  ADS  Google Scholar 

  17. G.R. Johnson, Material Characterization for Warhead Computations, Prog. Astronaut. Aeronaut., 1993, 155, p 165-197

    CAS  Google Scholar 

  18. S. Seo, O. Min, and H. Yang, Constitutive Equation for Ti-6Al-4V at High Temperatures Measured Using the SHPB Technique, Int. J. Impact Eng., 2005, 31, p 735-754

    Article  Google Scholar 

  19. K. Yokoyama, M. Watanabe, S. Kuroda, Y. Gotoh, T. Schmidt, and F. Gärtner, Simulation of Solid Particle Impact Behavior for Spray Processes, Mater. Trans., 2006, 47(7), p 1697-1702

    Article  CAS  Google Scholar 

  20. ASM International Handbook, vol. 8, Mechanical Testing and Evaluation, Materials Park, OH, 2000

  21. C. Borchers, T. Schmidt, F. Gärtner, and H. Kreye, High Strain Rate Deformation Microstructures of Stainless Steel 316L by Cold Spraying and Explosive Powder Compaction, Appl. Phys. A, 2008, 90, p 517-526

    Article  CAS  ADS  Google Scholar 

  22. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    CAS  Google Scholar 

  23. K.H. Kim, M. Watanabe, and S. Kuroda, Thermal Softening Effect on the Deposition Efficiency and Microstructure of Warm Sprayed Metallic Powder, Scripta Mater., 2009, 60(8), p 710-713

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Dr. K. Mitsuishi and Dr. K. Iakoubovskii of NIMS for the EELS analysis and Ms N. Kawano, Mr M. Komatsu, and Mr N. Kakeya of NIMS for sample preparations. This research was supported by the Nanotechnology Network program and World Premier International Research Center Initiative on Materials Nanoarchitectonics of MEXT, Japan and KAKENHI 19360335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeeHyun Kim.

Additional information

This article is an invited paper selected from presentations at the 3rd Asian Thermal Spray Conference (ATSC2008) and has been expanded from the original presentation. ATSC2008 was held at Nanyang Executive Centre, Singapore, November 6-7, 2008, and chaired by K.A. Khor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Watanabe, M. & Kuroda, S. Jetting-Out Phenomenon Associated with Bonding of Warm-Sprayed Titanium Particles onto Steel Substrate. J Therm Spray Tech 18, 490–499 (2009). https://doi.org/10.1007/s11666-009-9379-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9379-1

Keywords

Navigation