Log in

Effects of Temperature of In-flight Particles on Bonding and Microstructure in Warm-Sprayed Titanium Deposits

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Micron-sized titanium particles were deposited on steel substrates by the warm spraying, which is a modified high velocity oxy-fuel (HVOF) spraying technique. In the process, nitrogen gas is mixed with the HVOF flame jet to lower the temperature of injected powder particles. Detailed observations of splats formed on polished substrates by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted to investigate the effects of particle temperature on the bonding of splats with the substrate and the microstructure within the splats. At lower nitrogen flow rates, the particles observed were heavily deformed and exhibited diverse splat morphologies and microstructures. At higher nitrogen flow rates, most of the particles were impacted in the solid state and the oxidation of particles was remarkably less. The TEM observation revealed distinctively different microstructures within the splats as well as the splat/substrate interfaces depending on whether the particle was molten or solid before the impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Grujicic, J. R. Saylor, D. E. Beasley, W. S. DeRosset and D. Helfritch, Computational Analysis of the Interfacial Bonding between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227.

    Article  ADS  CAS  Google Scholar 

  2. C. Borchers, F.Gärtner, and T. Stoltenhoff, H. Assadi, H.Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93(12), p 10064-10070.

    Article  ADS  CAS  Google Scholar 

  3. J. Kawakita, S. Kuroda, T. Fukushima, H. Katanoda, K. Matsuo and H. Fukanuma, Dense Titanium Coatings by Modified HVOF Spraying, Surf. Coat. Tech., 2006, 201(3-4), p 1250-1255.

    Article  CAS  Google Scholar 

  4. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007.

    Google Scholar 

  5. T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742.

    Article  CAS  Google Scholar 

  6. T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272.

    Article  ADS  CAS  Google Scholar 

  7. P. Fauchais and G. Montavon, Plasma Spraying: From Plasma Generation to Coating Structure, Advances in Heat Transfer, 2007, 40, p 205-344.

    CAS  Google Scholar 

  8. A.A. Syed, A. Denoirjean, P. Fauchais, J.C. Labbe, On the Oxidation of Stainless Steel Particles in the Plasma Jet, Surf. Coat. Tech., 2006, 200(14-15), p 4368- 4382.

    Article  CAS  Google Scholar 

  9. S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process based on the High-Velocity Impact of Solid Particles, Sci. Technol. Adv. Mat., 2008, 9(3), p 033002 (17 p).

    Google Scholar 

  10. K.H. Kim, M. Watanabe, K. Mitsuishi, J. Kawakita, T. Wu, and S. Kuroda, Microstructure Observation on the Interface between Warm Spray Deposited Titanium Powder and Steel Substrate, International Thermal Spray Conference and Exposition 2008: Thermal Spray Crossing Borders, E. Lugscheider, Ed., June 2-4, ASM International, Maastricht, The Netherlands, 2008, CD-ROM, p 1289-1294.

  11. A. Sharma, R. J. Gambino, S. Sampath, Anisotropic Electrical Properties in Thermal Spray Metallic Coatings. Acta Mater, 2006, 54(1), 59-65.

    CAS  Google Scholar 

  12. K. Balani, A. Agarwal, S. Seal, J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scripta Mater., 2005, 53(7), p 845-850.

    Article  CAS  Google Scholar 

  13. M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Adiabatic Shear Instability based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688.

    CAS  Google Scholar 

  14. C.J. Li, W.Y. Li, Y.Y. Wang, Formation of Metastable Phases in Cold-Sprayed Soft Metallic Deposit, Sur. Coat. Tech., 2005, 198(1-3), p 469-473.

    Article  CAS  Google Scholar 

  15. C. Borchers, F. Gärtner, T. Stoltenhoff, and H. Kreye, Microstructural Bonding Features of Cold Sprayed Face Centered Cubic Metals, J. Appl. Phy., 2003, 93(8), p.4288-4292.

    Google Scholar 

  16. Y. **ong, K. Kang, G. Bae, S. Yoon, and C. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92(19), p 194101 (3 p).

    Google Scholar 

  17. A.C. Hall, L.N. Brewer, and T.J. Roemer, Preparation of Aluminum Coatings Containing Homogeneous Nanocrystalline Microstructures Using the Cold Spray Process, J. Therm. Spray Technol., 2008, 17(3), p 352-359.

    Article  ADS  CAS  Google Scholar 

  18. T. Chraska, A. H. King, Effect of Different Substrate Conditions upon Interface with Plasma Sprayed Zirconia—a TEM Study, Surf. Coat. Tech., 2002, 157(2-3), p 238-246.

    Article  CAS  Google Scholar 

  19. K.H. Kim, M. Watanabe, J. Kawakita, S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scripta Mater., 2008, 59(7), p 768-771.

    Article  CAS  Google Scholar 

  20. L.A. Giannuzzi, F.A. Stevie, A Review of Focused Ion Beam Milling Techniques for TEM Specimen Preparation, Micron, 1999, 30(3), p 197-204.

    Article  Google Scholar 

  21. K.H. Kim, M. Watanabe, and S. Kuroda, Thermal Softening Effect on the Deposition Efficiency and Microstructure of Warm Sprayed Metallic Powder, Scripta Mater., 2009, doi:10.1016/j.scriptamat.2008.12.050.

  22. J. Kawakita, H. Katanoda, M. Watanabe, K. Yokoyama, S. Kuroda, Warm Spraying: An Improved Spray Process to Deposit Novel Coatings, Surf. Coat. Tech., 2008, 202(18), p 4369-4373.

    Article  CAS  Google Scholar 

  23. M. Qu, Y. Wu, V. Srinivasan, and A. Gouldstone, Observations of Nanoporous Foam Arising from Impact and Rapid Solidification of Molten Ni Droplets, Appl. Phys. Lett., 2007, 90(25), p 254101 (3 p).

    Google Scholar 

  24. C.-J. Li, J.-L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Tech., 2004, 184(1), p 13-23.

    Article  CAS  Google Scholar 

  25. X. Jiang, Y. Wan, H. Herman, S. Sampath 2001 Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Im**ing Molten Droplets During Thermal Spray, Thin Solid Films 385(1-2), 132-141.

    Article  ADS  CAS  Google Scholar 

  26. B.D. Kharas, G. Wei, S. Sampath, H. Zhang, Morphology and Microstructure of Thermal Plasma Sprayed Silicon Splats and Coatings, Surf. Coat. Tech., 2006, 201(3-4), p 1454-1463.

    Article  CAS  Google Scholar 

  27. M. Fukumoto, T. Yamaguchi, M. Yamada, and T. Yasui, Splash Splat to Disk Splat Transition Behavior in Plasma-Sprayed Metallic Materials, J. Therm. Spray Technol., 2007, 16(5-6), p 905-912.

    Article  ADS  CAS  Google Scholar 

  28. V.R. Srivatsan, A. Dolatabadi A, Simulation of Particle-Shock Interaction in a High Velocity Oxygen Fuel Process, J. Therm. Spray Technol., 2006, 15(4), p 481-487.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Sanjay Sampath of SUNY Stony Brook University for his advice on the microstructural characteristic of deposited splats, and Ms Kawano and Mr Komatsu of NIMS for sample preparations. This research was supported by the Nanotechnology Network Program of Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government and KAKENHI 19360335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeeHyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Watanabe, M., Kawakita, J. et al. Effects of Temperature of In-flight Particles on Bonding and Microstructure in Warm-Sprayed Titanium Deposits. J Therm Spray Tech 18, 392–400 (2009). https://doi.org/10.1007/s11666-009-9303-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9303-8

Keywords

Navigation