Log in

Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joints

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigates the influence of adding Sb on the microstructure and adhesive strength of the Sn3.5Ag solder. Both solidus and liquidus temperatures increase as Sb additions increase. Adding 1.5wt.%Sb leads to the narrowest range (6.6°C) between the solidus and liquidus temperature of the solder. Adding Sb decomposes the as-soldered ringlike microstructure of Sn3.5Ag and causes solid-solution hardening. The as-soldered hardness increases with increasing Sb addition. For long-term storage, adding Sb reduces the size of the rodlike Ag3Sn compounds. The hardness also increases with increasing Sb addition. Adding Sb depresses the growth rate of interfacial intermetallic compounds (IMCs) layers, but the difference between 1% and 2% Sb is not distinct. For mechanical concern, adding Sb improves both adhesive strength and thermal resistance of Sn3.5Ag, where 1.5% Sb has the best result. However, adding Sb causes a variation in adhesive strength during thermal storage. The more Sb is added, the higher the variation reveals, and the shorter the storage time requires. This strength variation helps the solder joints to resist thermal storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Center of Manufacturing Sciences, Lead-Free Solder Project—Final Report (Ann Arbor, MI: National Center of Manufacturing Sciences, 1997).

    Google Scholar 

  2. A.Z. Miric and A. Grusd, Solder. Surf. Mount Technol. 10, 19 (1998).

    CAS  Google Scholar 

  3. Y. Miyazawa and T. Ariga, 1st Int. Symp. on Environmentally Conscious Design and Inverse Manufacturing (Los Alamitos, CA: IEEE Computer Society, 1999), pp. 616–619.

    Google Scholar 

  4. W. Yang and R.W. Messler, Jr., J. Electron. Mater. 23, 765 (1994).

    CAS  Google Scholar 

  5. D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, J. Electron. Mater. 26, 883 (1997).

    CAS  Google Scholar 

  6. L. Zakraysek, Welding J., Res. Suppl., 1972.11, 536s (1972).

  7. M. McCormack and S. **, J. Electron. Mater. 23, 715 (1994).

    CAS  Google Scholar 

  8. K. Habu, N. Takeda, H. Watanabe, H. Ooki, J. Abe, T. Saito, Y. Taniguchi, and K. Takayama, 1st Int. Symp. on Environmentally Conscious Design and Inverse Manufacturing (Los Alamitos, CA: IEEE Computer Society, 1999), pp. 606–609.

    Google Scholar 

  9. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 595 (1994).

    CAS  Google Scholar 

  10. S. ** and M. T. McCormack, U.S. patent 5,762,866 (9 June 1998).

  11. G. Petzow and G. Effenberg, eds., Ternary Alloys, Vol. 2 (New York: VCH, 1988), pp. 549–550.

    Google Scholar 

  12. N.R. Bonda and I.C. Noyan, IEEE Trans. Comp., Packaging Manufacturing Technol.—Part A 19, 208 (1990).

    Article  Google Scholar 

  13. H.-T. Lee and M.-H. Chen, Mater. Sci. Eng. A 333, 24 (2002).

    Article  Google Scholar 

  14. American Society for Metals, Metals Handbook, 8th ed., Vol. 8 (Metals Park, OH: American Society for Metals, 1976), pp. 428–430.

    Google Scholar 

  15. D.B. Masson and B.K. Kirkpatrick, J. Electron. Mater. 15, 349 (1986).

    CAS  Google Scholar 

  16. C.-S. Oh, J.-H. Shim, B.-J. Lee, and D.-N. Lee, J. Alloys Compounds 238, 155 (1996).

    Article  CAS  Google Scholar 

  17. R.K. Mahidhara, S.M.L. Sastry, K.L. Jerina, I. Turlik, and K.L. Murty, J. Mater. Sci. Lett. 13, 1387 (1994).

    Article  CAS  Google Scholar 

  18. D.R. Olsen and K.G. Spanjer, U.S. patent 4,170,472 (9 October 1979).

  19. D.R. Olsen and K.G. Spanjer, Solid State Technol. 1981, 9, 121 (1981).

    Google Scholar 

  20. S.G. Gonya, J.K. Lake, R.C. Long, and R.N. Wild, U.S. patent 5,393,489 (28 February 1995).

  21. S. Kusabiraki and M. Sumita, U.S. patent 6,229,248 (8 May 2001).

  22. L. Zakraysek, Welding J., Res. Suppl. 1972, 11, 536 (1972).

    Google Scholar 

  23. E.K. Ohriner, Welding J., Res. Suppl. 1987, 7, 191 (1987).

    Google Scholar 

  24. A.Z. Miric and A. Grusd, Soldering Surf. Mount Technol. 10, 19 (1998).

    CAS  Google Scholar 

  25. I. Artaki, A.M. Jackson, and P.T. Vianco, J. Electron. Mater. 23, 757 (1994).

    CAS  Google Scholar 

  26. P.T. Vianco, K.L. Erickson, and P.L. Hopkins, J. Electron. Mater. 23, 721 (1994).

    CAS  Google Scholar 

  27. H.-T. Lee, M.-H. Chen, H.-M. Jao, and T.-L. Liao, Mater. Sci. Eng. A 358, 134 (2003).

    Article  Google Scholar 

  28. M.E. Loomans, S. Vaynman, G. Ghosh, and M.E. Fine, J. Electron. Mater. 23, 741 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HT., Chen, MH., Jao, HM. et al. Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joints. J. Electron. Mater. 33, 1048–1054 (2004). https://doi.org/10.1007/s11664-004-0034-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0034-9

Key words

Navigation