Log in

Exceptional Strain-Hardening Capacity of a Medium-Entropy Alloy CoCrNi With Grain-Size Gradient Structure

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 19 June 2023

This article has been updated

Abstract

Surface mechanical attrition treatment (SMAT) was used to produce a surface layer with grain-size gradient along the thickness of spark-plasma-sintered medium-entropy alloy CoCrNi. In comparison with the spark-plasma-sintered fine-grained CoCrNi, the alloy after SMAT shows a 46 pct increase in yield strength and over three times higher strain-hardening rate (\(\frac{{\text{d}}\sigma }{{\text{d}}\varepsilon }\)). The ultimate tensile strength (σUTS) and the elongation (εf) reach 1420 MPa and 61.3 pct, respectively. The excellent strength-ductility synergy should be attributed to the Hall–Petch strengthening and the formation of high density of dislocations and nanotwins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. E.P. George, D. Raabe, and R.O. Ritchie: Nat. Rev. Mat., 2019, vol. 4, pp. 515–34.

    Article  CAS  Google Scholar 

  2. S. Bajpai, B.E. MacDonald, T.J. Rupert, H. Hahn, E.J. Lavernia, and D. Apelian: Materialia, 2022, vol. 24, 101476.

    Article  CAS  Google Scholar 

  3. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153–158.

    Article  CAS  Google Scholar 

  4. B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Nat. Commun., 2016, vol. 7, p. 10602.

    Article  CAS  Google Scholar 

  5. K. Lu, A. Chauhan, M. Walter, A.S. Tirunilai, M. Schneider, G. Laplanche, J. Freudenberger, A. Kauffmann, M. Heilmaier, and J. Aktaa: Scripta Mater., 2021, vol. 194, 113667.

    Article  CAS  Google Scholar 

  6. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George: Acta Mater., 2017, vol. 128, pp. 292–303.

    Article  CAS  Google Scholar 

  7. J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, and M.J. Mills: Acta Mater., 2017, vol. 132, pp. 35–48.

    Article  CAS  Google Scholar 

  8. P. Sathiyamoorthi, J. Moon, J.W. Bae, P. Asghari-Rad, and H.S. Kim: Scripta Mater., 2019, vol. 163, pp. 152–56.

    Article  CAS  Google Scholar 

  9. S. Praveen, J.W. Bae, P. Asghari-Rad, J.M. Park, and H.S. Kim: Mater. Sci. Eng. A, 2018, vol. 735, pp. 394–97.

    Article  CAS  Google Scholar 

  10. Y.T. Zhu, X.Z. Liao, X.L. Wu, and J. Narayan: J. Mater. Sci., 2013, vol. 48, pp. 4467–475.

    Article  CAS  Google Scholar 

  11. Y.T. Zhu and X. Liao: Nat. Mater., 2004, vol. 3, pp. 351–52.

    Article  CAS  Google Scholar 

  12. C.E. Slone, J. Miao, E.P. George, and M.J. Mills: Acta Mater., 2019, vol. 165, pp. 496–507.

    Article  CAS  Google Scholar 

  13. M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, and X. Wu: Proc. Natl. Acad. Sci., 2018, vol. 115, pp. 7224–229.

    Article  CAS  Google Scholar 

  14. X.H. Du, W.P. Li, H.T. Chang, T. Yang, G.S. Duan, B.L. Wu, J.C. Huang, F.R. Chen, C.T. Liu, W.S. Chuang, Y. Lu, M.L. Sui, and E.W. Huang: Nat. Commun., 2020, vol. 11, p. 2390.

    Article  CAS  Google Scholar 

  15. Y. Ma, M. Yang, F. Yuan, and X. Wu: J. Mater. Sci. Technol., 2021, vol. 82, pp. 122–34.

    Article  Google Scholar 

  16. X. Zheng, W. **e, L. Zeng, H. Wei, X. Zhang and H. Wang: Mater. Sci. Eng. A, 2021, vol. 821.

  17. M.N. Hasan, Y.F. Liu, X.H. An, J. Gu, M. Song, Y. Cao, Y.S. Li, Y.T. Zhu, and X.Z. Liao: Int. J. Plast., 2019, vol. 123, pp. 178–95.

    Article  CAS  Google Scholar 

  18. K. Lu: Science, 2014, vol. 345, pp. 1455–456.

    Article  CAS  Google Scholar 

  19. X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu: Proc. Natl. Acad. Sci., 2014, vol. 111, pp. 7197–201.

    Article  CAS  Google Scholar 

  20. J. Wang, H. Yang, J. Ruan, Y. Wang, and S. Ji: J. Mater. Res., 2019, vol. 34, pp. 2126–136.

    Article  CAS  Google Scholar 

  21. L. Chai, K. **ang, J. **a, V. Fallah, K.L. Murty, Z. Yao, and B. Gan: Philos. Mag., 2019, vol. 99, pp. 3015–031.

    Article  CAS  Google Scholar 

  22. S. Yuan, B. Gan, L. Qian, B. Wu, H. Fu, H.-H. Wu, C.F. Cheung, and X.-S. Yang: Scripta Mater., 2021, vol. 203, p. 114117.

    Article  CAS  Google Scholar 

  23. P.C. Zhao, B. Guan, Y.G. Tong, R.Z. Wang, X. Li, X.C. Zhang, and S.T. Tu: J. Mater. Sci. Technol., 2022, vol. 109, pp. 54–63.

    Article  Google Scholar 

  24. R. Wen, C. You, L. Zeng, H. Wang, and X. Zhang: J. Mater. Sci., 2020, vol. 55, pp. 12544–2553.

    Article  CAS  Google Scholar 

  25. W. Lu, X. Luo, D. Ning, M. Wang, C. Yang, M. Li, Y. Yang, P. Li, and B. Huang: J. Mater. Sci. Technol., 2022, vol. 112, pp. 195–201.

    Article  Google Scholar 

  26. B. Gan, J. Gu, M.A. Monclús, X. Dong, Y.S. Zhao, H.Y. Yu, J.H. Du, M. Song and Z.N. Bi, in: Superalloys, 2020, pp. 619–628.

  27. K. Lu and J. Lu: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 38–45.

    Article  Google Scholar 

  28. M.T. Tsai, J.C. Huang, W.Y. Tsai, T.H. Chou, C.-F. Chen, T.H. Li, and J.S.C. Jang: Intermetallics, 2018, vol. 93, pp. 113–21.

    Article  CAS  Google Scholar 

  29. M. Novelli, R. Chulist, W. Skrotzki, E.P. George, and T. Grosdidier: Appl. Phys. Lett., 2021, vol. 119, p. 201912.

    Article  CAS  Google Scholar 

  30. A.M. Korsunsky, M. Sebastiani, and E. Bemporad: Mater. Lett., 2009, vol. 63, pp. 1961–963.

    Article  CAS  Google Scholar 

  31. Y. Liu, Y. He, and S. Cai: Mater. Sci. Eng. A, 2021, vol. 801, p. 140429.

    Article  CAS  Google Scholar 

  32. S. Yoshida, T. Bhattacharjee, Y. Bai, and N. Tsuji: Scripta Mater., 2017, vol. 134, pp. 33–6.

    Article  CAS  Google Scholar 

  33. I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, and I. Dlouhy: Mater. Sci. Eng. A, 2017, vol. 701, pp. 370–80.

    Article  CAS  Google Scholar 

  34. I. Moravcik, H. Hadraba, L. Li, I. Dlouhy, D. Raabe, and Z. Li: Scripta Mater., 2020, vol. 178, pp. 391–97.

    Article  CAS  Google Scholar 

  35. Z. Wu, W. Guo, K. **, J.D. Poplawsky, Y. Gao, and H. Bei: J. Mater. Res., 2018, vol. 33, pp. 3301–309.

    Article  CAS  Google Scholar 

  36. J.-P. Liu, J.-X. Chen, T.-W. Liu, C. Li, Y. Chen, and L.-H. Dai: Scripta Mater., 2020, vol. 181, pp. 19–24.

    Article  CAS  Google Scholar 

  37. H.W. Deng, Z.M. **e, B.L. Zhao, Y.K. Wang, M.M. Wang, J.F. Yang, T. Zhang, Y. **ong, X.P. Wang, Q.F. Fang, and C.S. Liu: Mater. Sci. Eng. A, 2019, vol. 744, pp. 241–46.

    Article  CAS  Google Scholar 

  38. D. Lee, M.P. Agustianingrum, N. Park, and N. Tsuji: J. Alloys Compd., 2019, vol. 800, pp. 372–78.

    Article  CAS  Google Scholar 

  39. R. Chang, W. Fang, X. Bai, C. **a, X. Zhang, H. Yu, B. Liu, and F. Yin: J. Alloys Compd., 2019, vol. 790, pp. 732–43.

    Article  CAS  Google Scholar 

  40. H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. **ong, T. Wang, Z.Q. Li, and Z.H. Wang: Mater. Des., 2021, vol. 197, p. 109202.

    Article  CAS  Google Scholar 

  41. F. Weng, Y. Chew, Z. Zhu, X. Yao, L. Wang, F.L. Ng, S. Liu, and G. Bi: Addit. Manuf., 2020, vol. 34, p. 101202.

    CAS  Google Scholar 

  42. X. Liu, M. Zhang, Y. Ma, W. Dong, R. Li, Y. Lu, Y. Zhang, P. Yu, Y. Gao, and G. Li: Mater. Sci. Eng. A, 2020, vol. 776, p. 139208.

    Google Scholar 

  43. N. An, Y. Sun, Y. Wu, J. Tian, Z. Li, Q. Li, J. Chen, and X. Hui: Mater. Sci. Eng. A, 2020, vol. 798, p. 140213.

    Article  CAS  Google Scholar 

  44. R. Chang, W. Fang, J. Yan, H. Yu, X. Bai, J. Li, S. Wang, S. Zheng, and F. Yin: J. Mater. Sci. Technol., 2021, vol. 62, pp. 25–33.

    Article  CAS  Google Scholar 

  45. A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier, and A. Kauffmann: Mater. Sci. Eng. A, 2020, vol. 783, p. 139290.

    Article  CAS  Google Scholar 

  46. C.K. Soundararajan, H. Luo, D. Raabe, and Z. Li: Corros. Sci., 2020, vol. 167, p. 108510.

    Article  CAS  Google Scholar 

  47. J. Wang, H. Yang, H. Huang, J. Ruan, and S. Ji: J. Alloys Compd., 2019, vol. 798, pp. 576–86.

    Article  CAS  Google Scholar 

  48. H. Huang, J. Wang, H. Yang, S. Ji, H. Yu, and Z. Liu: Scripta Mater., 2020, vol. 188, pp. 216–21.

    Article  CAS  Google Scholar 

  49. Y. Shi, Y.-D. Wang, S. Li, R. Li, and Y. Wang: Mater. Sci. Eng. A, 2020, vol. 788, p. 139600.

    Article  CAS  Google Scholar 

  50. W.-R. Jian, Z. **e, S. Xu, Y. Su, X. Yao, and I.J. Beyerlein: Acta Mater., 2020, vol. 199, pp. 352–69.

    Article  CAS  Google Scholar 

  51. Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai: Acta Mater., 2017, vol. 138, pp. 72–82.

    Article  CAS  Google Scholar 

  52. Y. Fu, W. **ao, D. Kent, M.S. Dargusch, J. Wang, X. Zhao, and C. Ma: Scripta Mater., 2020, vol. 187, pp. 285–90.

    Article  CAS  Google Scholar 

  53. R.E. Smallman and K.H. Westmacott: Philos. Mag., 1957, vol. 2, pp. 669–83.

    Article  CAS  Google Scholar 

  54. S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, and N. Tsuji: Acta Mater., 2019, vol. 171, pp. 201–15.

    Article  CAS  Google Scholar 

  55. E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shenzhen Fundamental Research Project (Grant No. JCJY20190809153205492) and National Natural Science Foundation of China (No. 52122102).

Conflict interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao Xu or Fuzeng Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Yan, K., Xu, J. et al. Exceptional Strain-Hardening Capacity of a Medium-Entropy Alloy CoCrNi With Grain-Size Gradient Structure. Metall Mater Trans A 54, 1332–1341 (2023). https://doi.org/10.1007/s11661-023-06988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06988-z

Navigation