Log in

Microstructure and Mechanical Properties of Nanostructured CoCrFeMoTi High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

CoCrFeMoTi high-entropy alloy (HEA) was synthesized using mechanical alloying and spark plasma sintering. The corresponding microstructural features and phase composition were compared with those of CoCrFeNi, CoCrFeNiTix (x = 0, 0.3 and 0.5) and CoCrFeNiMox (x = 0, 0.3, 0.5 and 0.85) HEAs. Co, Cr, Fe, Mo and Ti elemental powders were mixed in equiatomic ratio and mechanically alloyed in a planetary ball mill at 300 rpm for up to 80 h. The influence of the milling duration on the evolution of microstructure, constituent phases and morphology was studied. After 40 h of ball milling, two supersaturated BCC solid solution phases were obtained. Milling time increasing resulted in grain refinement and higher solid solution homogenization characterized by a high internal strain. A partial phase transformation from BCC to intermetallic phases when the temperature exceeds 660 °C was revealed. After SPS consolidation, the Vickers hardness was 778 ± 10 HV, in combination with an ultimate shear stress of 216 ± 20 MPa and a yield shear stress of 81 ± 15 MPa for the material sintered at 950 °C and 65 MPa. Further increasing in the sintering temperature resulted in enhanced hardness value of 1600 ± 5 but reduced yield shear stress. The failure analysis revealed a brittle fracture of the synthesized materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511

    Article  CAS  Google Scholar 

  2. S.S. Ghazi and K.R. Ravi, Phase-Evolution in High Entropy Alloys: Role of Synthesis Route, Intermetallics, 2016, 73, p 40–42

    Article  Google Scholar 

  3. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu, Alloying Behavior and Novel Properties of CoCrFeNiMn High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering, Intermetallics, 2015, 56, p 24–27

    Article  CAS  Google Scholar 

  4. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1–184

    Article  CAS  Google Scholar 

  5. I. Moravcik, L. Gouvea, J. Cupera, and I. Dlouhy, Preparation and Properties of Medium Entropy CoCrNi/Boride Metal Matrix Composite, J. Alloys Compd., 2018, 748, p 979–988

    Article  CAS  Google Scholar 

  6. I. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, and I. Dlouhy, Synergic Strengthening by Oxide and Coherent Precipitate Dispersions in High-Entropy Alloy Prepared by Powder Metallurgy, Scr. Mater., 2018, 157, p 24–29

    Article  CAS  Google Scholar 

  7. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Ductile CoCrFeNiMox High Entropy Alloys Strengthened by Hard Intermetallic Phases, Acta Mater., 2016, 116, p 332–342

    Article  CAS  Google Scholar 

  8. T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructures and Mechanical Properties of Multiprincipal Component CoCrFeNiTix Alloy, Mater. Sci. Eng. A, 2012, 556, p 170–174

    Article  CAS  Google Scholar 

  9. B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, and M.X. Wang, Effect of Elemental Interaction on Microstructure of CuCrFeNiMn High Entropy Alloy System, J. Alloys Compd., 2010, 493, p 148–153

    Article  CAS  Google Scholar 

  10. F. Tian, L.K. Varga, N. Chen, J. Shen, and L. Vitos, Ab Initio Design of Elastically Isotropic TiZrNbMoVx High-Entropy Alloys, J. Alloys Compd., 2014, 599, p 19–25

    Article  CAS  Google Scholar 

  11. H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, and M. Knezevic, Compressive, Shear, and Fracture Behavior of CNT Reinforced Al Matrix Composites Manufactured by Severe Plastic Deformation, Mater. Des., 2016, 106, p 112–119

    Article  CAS  Google Scholar 

  12. M. Zabihi, M.R. Toroghinejad, and A. Shafyei, Shear Punch Test in Al/Alumina Composite Strips Produced by Powder Metallurgy and Accumulative Roll Bonding, Mater. Sci. Eng. A, 2016, 667, p 383–390

    Article  CAS  Google Scholar 

  13. M. Zabihi, M.R. Toroghinejad, and A. Shafyei, Evaluating the Mechanical Behavior of Hot Rolled Al/Alumina Composite Strips Using Shear Punch Test, Mater. Sci. Eng. A, 2014, 618, p 490–495

    Article  CAS  Google Scholar 

  14. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, and F. Zhang, Mechanical Alloying Synthesis and Spark Plasma Sintering Consolidation of CoCrFeNiAl High-Entropy Alloy, J. Alloys Compd., 2014, 589, p 61–66

    Article  CAS  Google Scholar 

  15. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495, p 33–38

    Article  CAS  Google Scholar 

  16. W. Chen, Z. Fu, S. Fang, H. **ao, and D. Zhu, Alloying Behavior, Microstructure and Mechanical Properties in a FeNiCrCo0.3Al0.7 High Entropy Alloy, Mater. Des., 2013, 51, p 854–860

    Article  CAS  Google Scholar 

  17. J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye, Microstructure and Nanoscale Composition Analysis of the Mechanical Alloying of FexCu100−x (X = 16, 60), Acta Mater., 1997, 45, p 113–124

    Article  CAS  Google Scholar 

  18. B.D. Cullity and S.R. Stock, Elements of x-ray Diffraction, 3rd ed., Pearson, Upper Saddle River, 2001

    Google Scholar 

  19. S. Fang, W. Chen, and Z. Fu, Microstructure and Mechanical Properties of Twinned Al0.5CrFeNiCo0.3C0.2 High Entropy Alloy Processed by Mechanical Alloying and Spark Plasma Sintering, Mater. Des., 2014, 54, p 973–979

    Article  CAS  Google Scholar 

  20. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Nanocrystalline CoCrFeNiCuAl High-Entropy Solid Solution Synthesized by Mechanical Alloying, J. Alloys Compd., 2009, 485, p L31–L34

    Article  CAS  Google Scholar 

  21. C. Sajith Babu, K. Sivaprasad, V. Muthupandi, and J.A. Szpunar, Characterization of Nanocrystalline AlCoCrCuNiFeZn High Entropy Alloy Produced by Mechanical Alloying, Procedia Mater. Sci., 2014, 5, p 1020–1026

    Article  Google Scholar 

  22. O. Maulik and V. Kumar, Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) Alloy Powders by Mechanical Alloying, Mater. Charact., 2015, 110, p 116–125

    Article  CAS  Google Scholar 

  23. F.J. Baldenebro-Lopez, J.M. Herrera-Ramirez, S.P. Arredondo-Rea, C.D. Gomez-Esparza, and R. Martinez-Sanchez, Simultaneous Effect of Mechanical Alloying and Arc-Melting Processes in the Microstructure and Hardness of an AlCoFeMoNiTi High-Entropy Alloy, J. Alloys Compd., 2014, 643, p s250–s255

    Article  Google Scholar 

  24. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Mater. Int., 2011, 21, p 433–446

    Google Scholar 

  25. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Met. Trans., 2005, 46, p 2817–2829

    CAS  Google Scholar 

  26. R. Sriharitha, B.S. Murty, and R.S. Kottada, Phase Formation in Mechanically Alloyed AlxCoCrCuFeNi (X = 0.45, 1, 2.5, 5 mol) High Entropy Alloys, Intermetallics, 2013, 32, p 119–126

    Article  CAS  Google Scholar 

  27. S. Praveen, B.S. Murty, and S. Kottada Ravi, Phase Evolution and Densification Behavior of Nanocrystalline Multicomponent High Entropy Alloys during Spark Plasma Sintering, JOM, 2013, 65, p 1797–1804

    Article  CAS  Google Scholar 

  28. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, and H.C. Chen, On the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System, Mater. Lett., 2007, 61, p 1–5

    Article  CAS  Google Scholar 

  29. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy After Mechanical Alloying, J. Mater. Sci., 2010, 45, p 5158–5163

    Article  CAS  Google Scholar 

  30. T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and Mechanical Properties of Multiprincipal Component CoCrFeNiMox Alloys, Mater. Charact., 2012, 70, p 63–67

    Article  CAS  Google Scholar 

  31. A.A. Roostaei, A. Zarei-Hanzaki, H.R. Abedi, and M.R. Rokni, An Investigation into the Mechanical Behavior and Microstructural Evolution of the Accumulative Roll Bonded AZ31 Mg Alloy Upon Annealing, Mater. Des., 2011, 32, p 2963–2968

    Article  CAS  Google Scholar 

  32. R.K. Guduru, K.A. Darling, R. Kishore, R.O. Scattergood, C.C. Koch, and K.L. Murty, Evaluation of Mechanical Properties Using Shear-Punch Testing, Mater. Sci. Eng. A, 2005, 395, p 307–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Cavaliere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabizadeh, A., Toroghinejad, M.R., Karimzadeh, F. et al. Microstructure and Mechanical Properties of Nanostructured CoCrFeMoTi High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering. J. of Materi Eng and Perform 28, 7710–7725 (2019). https://doi.org/10.1007/s11665-019-04501-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04501-5

Keywords

Navigation