Log in

NiFe-LDHs@MnO2 heterostructure as a bifunctional electrocatalyst for oxygen-involved reactions and Zn-air batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nanoscaled nickel–iron layered double hydroxides (NiFe-LDHs) were coated on α-MnO2 via a chemical co-precipitation method. The resulting NiFe-LDHs@MnO2 composite served as a bifunctional electrocatalyst, which combined the high catalytic activities of NiFe-LDHs for oxygen evolution reaction (OER) and MnO2 for oxygen reduction reaction (ORR), respectively. The as-fabricated NiFe-LDHs@MnO2 electrode manifests a high current density of 93 and 48 mA·cm−2 recorded at 0.6 and − 0.3 V vs. Hg/HgO, respectively, comparable to that of commercial Pt/C catalyst (58 and 31 mA·cm−2, respectively). Moreover, such a composite can serve as an air electrode in the rechargeable zinc-air battery. The as-assembled zinc-air battery using NiFe-LDHs@MnO2 cathode exhibits a discharge voltage at 1.08–1.15 V and charge voltage at 2.05–2.11 V after a cycle of 42 h at 25 mA·cm−2, demonstrating a desired cycling stability. The proposed compositing strategy herein may pave a way for the exploration of novel electrode materials for rechargeable metal-air batteries with superior electrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fu J, Liang RL, Liu GH, Yu AP, Bai ZY, Yang L, Chen ZW (2019) Recent progress in electrically rechargeable zinc-air batteries. Adv Mater 31(31):1805230. https://doi.org/10.1002/adma.201805230

    Article  CAS  Google Scholar 

  2. Sun Y, Zhang X, Luo M, Chen X, Wang L, Li Y, Li M, Qin Y, Li C, Xu N, Lu G, Gao P, Guo S (2018) Ultrathin PtPd-based nanorings with abundant step atoms enhance oxygen catalysis. Adv Mater 30(38):1802136. https://doi.org/10.1002/adma.201802136

    Article  CAS  Google Scholar 

  3. Yan ZX, Wang HE, Zhang MP, Jiang ZF, Jiang TS, **e JM (2013) Pt supported on Mo2C particles with synergistic effect and strong interaction force for methanol electro-oxidation. Electrochim Acta 95:218–224. https://doi.org/10.1016/j.electacta.2013.02.031

    Article  CAS  Google Scholar 

  4. Yan ZX, Zhang MM, **e JM, Wang HE, Wei W (2013) Smaller Pt particles supported on mesoporous bowl-like carbon for highly efficient and stable methanol oxidation and oxygen reduction reaction. J Power Sources 243:48–53. https://doi.org/10.1016/j.jpowsour.2013.06.008

    Article  CAS  Google Scholar 

  5. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM, Duan X, Mueller T, Huang Y (2015) High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348(6240):1230–1234. https://doi.org/10.1126/science.aaa8765

    Article  CAS  PubMed  Google Scholar 

  6. Han J, Meng X, Lu L, Bian J, Li Z, Sun C (2019) Single-atom Fe-N-x-C as an efficient electrocatalyst for zinc-air batteries. Adv Funct Mater 29(41):1808872. https://doi.org/10.1002/adfm.201808872

    Article  CAS  Google Scholar 

  7. Shang C, Yang M, Wang Z, Li M, Liu M, Zhu J, Zhu Y, Zhou L, Cheng H, Gu Y, Tang Y, Zhao X, Lu Z (2017) Encapsulated MnO in N-do** carbon nanofibers as efficient ORR electrocatalysts. Sci China Mater 60(10):937–946. https://doi.org/10.1007/s40843-017-9103-1

    Article  CAS  Google Scholar 

  8. Chan ZM, Kitchaev DA, Weker JN, Schnedermann C, Lim K, Ceder G, Tumas W, Toney MF, Nocera DG (2018) Electrochemical trap** of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts. Proc Nat Acad Sci 115(23):E5261–E5268. https://doi.org/10.1073/pnas.1722235115

    Article  CAS  Google Scholar 

  9. Chen X, Liu B, Zhong C, Liu Z, Liu J, Ma L, Deng Y, Han X, Wu T, Hu W, Lu J (2017) Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv Energy Mater 7(18):1700779. https://doi.org/10.1002/aenm.201700779

    Article  CAS  Google Scholar 

  10. Li X-C, She F-S, Shen D, Liu C-P, Chen L-H, Li Y, Deng Z, Chen Z-H, Wang H-E (2018) Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Adv 8(50):28625–28631. https://doi.org/10.1039/c8ra04256j

    Article  CAS  Google Scholar 

  11. Liu JX, Cao H, Jiang B, Xue YH, Fu L (2016) Newborn 2D materials for flexible energy conversion and storage. Sci China Mater 59(6):459–474. https://doi.org/10.1007/s40843-016-5055-5

    Article  CAS  Google Scholar 

  12. Wang Y, Yan F, Ma X, Zhu C, Zhang X, Chen Y (2021) Hierarchically 3D bifunctional catalysts assembled with 1D MoC core/branched N-doped CNT arrays for zinc-air batteries. Electrochim Acta 367:137522. https://doi.org/10.1016/j.electacta.2020.137522

    Article  CAS  Google Scholar 

  13. Zhang T, Li Z, Wang L, Zhang Z, Wang S (2019) Spinel CoFe2O4 supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction. Int J Hydrogen Energy 44(3):1610–1619. https://doi.org/10.1016/j.ijhydene.2018.11.120

    Article  CAS  Google Scholar 

  14. Wang X-T, Ouyang T, Wang L, Zhong J-H, Liu Z-Q (2020) Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew Chem Int Ed 59(16):6492–6499. https://doi.org/10.1002/anie.202000690

    Article  CAS  Google Scholar 

  15. Bao X-J, Zhang Z-J, Luo T-Z, Wu X-T, **e Z-S, Lan S-K, **e S-Z, Zhou D-B (2020) Conversion of cerium and lanthanum from rare earth polishing powder wastes to CeO2 and La0.6Ca0.4CoO3. Hydrometallurgy 193:105317. https://doi.org/10.1016/j.hydromet.2020.105317

    Article  CAS  Google Scholar 

  16. Chen C, Wang X-T, Zhong J-H, Liu J, Waterhouse GIN, Liu Z-Q (2021) Epitaxially grown heterostructured SrMn3O6-x-SrMnO3 with high-valence Mn3+/4+ for improved oxygen reduction catalysis. Angew Chem Int Ed 60(40):22043–22050. https://doi.org/10.1002/anie.202109207

    Article  CAS  Google Scholar 

  17. Su X, Wang Y, Zhou J, Gu S, Li J, Zhang S (2018) Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J Am Chem Soc 140(36):11286–11292. https://doi.org/10.1021/jacs.8b05294

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Wang Y, Dai L, Yao J (2016) Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv Mater 28(15):3000–3006. https://doi.org/10.1002/adma.201506112

    Article  CAS  PubMed  Google Scholar 

  19. Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C-Y, Zhou W, Zhao J, Qiu J (2017) Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv Mater 29(31):1700874. https://doi.org/10.1002/adma.201700874

    Article  CAS  Google Scholar 

  20. Li Q, He T, Zhang YQ, Wu HQ, Liu JJ, Qi YJ, Lei YP, Chen H, Sun ZF, Peng C, Yi LZ, Zhang Y (2019) Biomass waste-derived 3D metal-free porous carbon as a bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Sustain Chem Eng 7(20):17039–17046. https://doi.org/10.1021/acssuschemeng.9b02964

    Article  CAS  Google Scholar 

  21. Wu M, Zhang G, Hu Y, Wang J, Sun T, Regier T, Qiao J, Sun S (2021) Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy 3(1):176–187. https://doi.org/10.1002/cey2.52

    Article  CAS  Google Scholar 

  22. Wu J, Liu B, Fan X, Ding J, Han X, Deng Y, Hu W, Zhong C (2020) Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy 2(3):370–386. https://doi.org/10.1002/cey2.60

    Article  CAS  Google Scholar 

  23. Wang Y, Zhang Y, Liu Z, **e C, Feng S, Liu D, Shao M, Wang S (2017) Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew Chem Int Ed 56(21):5867–5871. https://doi.org/10.1002/anie.201701477

    Article  CAS  Google Scholar 

  24. Haruna AB, Ozoemena KI (2020) Manganese-based bifunctional electrocatalysts for zinc-air batteries. Curr Opin Electrochem 21:219–224. https://doi.org/10.1016/j.coelec.2020.02.021

    Article  CAS  Google Scholar 

  25. Cao YL, Yang HX, Ai XP, **ao LF (2003) The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J Electroana Chem 557:127–134. https://doi.org/10.1016/s0022-0728(03)00355-3

    Article  CAS  Google Scholar 

  26. Deng Z, Huang X, Zhao X, Cheng H, Wang HE (2019) Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries. J Central South Univ 26(6):1481–1492. https://doi.org/10.1007/s11771-019-4104-9

    Article  CAS  Google Scholar 

  27. Wang H, Lu Z, Qian D, Li Y, Zhang W (2007) Single-crystal alpha-MnO2 nanorods: synthesis and electrochemical properties. Nanotechnology 18(11):115616. https://doi.org/10.1088/0957-4484/18/11/115616

    Article  CAS  Google Scholar 

  28. Yang D, Tan H, Rui X, Yu Y (2019) Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem Energy Rev 2(3):395–427. https://doi.org/10.1007/s41918-019-00035-5

    Article  CAS  Google Scholar 

  29. Vilas Boas N, Batista Souza Junior J, Carlos Varanda L, Antonio Spinola Machado S, Luiz Calegaro M (2019) Bismuth and cerium doped cryptomelane-type manganese dioxide nanorods as bifunctional catalysts for rechargeable alkaline metal-air batteries. Appl Catal B Environ 258:118014. https://doi.org/10.1016/j.apcatb.2019.118014

    Article  CAS  Google Scholar 

  30. Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44(3):699–728. https://doi.org/10.1039/c4cs00218k

    Article  CAS  PubMed  Google Scholar 

  31. Wan L, Wang P, Lin Y, Wang B (2019) Janus-typed integrated bifunctional air electrode with MnOx-NiFe LDH/Ni foam for rechargeable zinc-air batteries. J Electrochem Soc 166(14):A3409–A3415. https://doi.org/10.1149/2.1001914jes

    Article  CAS  Google Scholar 

  32. Li X, Dong F, Xu N, Zhang T, Li K, Qiao J (2018) Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl Mater Interfaces 10(18):15591–15601. https://doi.org/10.1021/acsami.7b18684

    Article  CAS  PubMed  Google Scholar 

  33. Wang P, Lin Y, Wan L, Wang B (2019) Construction of a Janus MnO2-NiFe electrode via selective electrodeposition strategy as a high-performance bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Appl Mater Interfaces 11(41):37701–37707. https://doi.org/10.1021/acsami.9b12232

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z, Yu A, Ahmed R, Wang H, Li H, Chen Z (2012) Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 69:295–300. https://doi.org/10.1016/j.electacta.2012.03.001

    Article  CAS  Google Scholar 

  35. Wang Q, Zhou D, Yu H, Zhang Z, Bao X, Zhang F, Zhou M (2015) NiFe layered double-hydroxide and cobalt-carbon composite as a high-performance eletrocatalyst for bifunctional oxygen electrode. J Electrochem Soc 162(12):A2362–A2366. https://doi.org/10.1149/2.0801512jes

    Article  CAS  Google Scholar 

  36. Wang HE, Qian D, Lu ZG, Li YK, Cheng RJ, Li YJ (2007) Facile synthesis and electrochemical properties of hierarchical MnO2 submicrospheres and LiMn2O4 microspheres. J Phys Chem Solid 68(7):1422–1427. https://doi.org/10.1016/j.jpcs.2007.02.041

    Article  CAS  Google Scholar 

  37. Wang HE, Qian D (2008) Synthesis and electrochemical properties of alpha-MnO2 microspheres. Mater Chem Phys 109(2–3):399–403. https://doi.org/10.1016/j.matchemphys.2007.12.008

    Article  CAS  Google Scholar 

  38. Wang HE, Lu ZG, Qian D, Fang SP, Zhang JF (2008) Facile synthesis and electrochemical characterization of hierarchical alpha-MnO2 spheres. J Alloy Compd 466(1–2):250–257. https://doi.org/10.1016/j.jallcom.2007.11.041

    Article  CAS  Google Scholar 

  39. Bao X, Zhang Z, Zhou D (2020) Pseudo-capacitive performance enhancement of alpha-MnO2 via in situ coating with polyaniline. Synth Met 260:116271. https://doi.org/10.1016/j.synthmet.2019.116271

    Article  CAS  Google Scholar 

  40. Zhang Z, Zhou D, Zhou L, Yu H, Huang B (2018) NiFe LDH-CoPc/CNTs as novel bifunctional electrocatalyst complex for zinc-air battery. Ionics 24(6):1709–1714. https://doi.org/10.1007/s11581-017-2322-4

    Article  CAS  Google Scholar 

  41. Zhang ZJ, Zhou DB, Liao JJ, Bao XJ, Yu HZ (2019) Synthesis of high crystalline nickel-iron hydrotalcite-like compound as an efficient electrocatalyst for oxygen evolution reaction. Int J Energy Res 43(4):1460–1467. https://doi.org/10.1002/er.4359

    Article  CAS  Google Scholar 

  42. Li M, Zhou M, Wen ZQ, Zhang YX (2017) Flower-like NiFe layered double hydroxides coated MnO2 for high-performance flexible supercapacitors. J Energy Storage 11:242–248. https://doi.org/10.1016/j.est.2017.03.010

    Article  Google Scholar 

  43. Lei C, Pi M, Kuang P, Guo Y, Zhang F (2017) Organic dye removal from aqueous solutions by hierarchical calcined Ni-Fe layered double hydroxide: isotherm, kinetic and mechanism studies. J Colloid Interf Sci 496:158–166. https://doi.org/10.1016/j.jcis.2017.02.025

    Article  CAS  Google Scholar 

  44. Ning F, Shao M, Xu S, Fu Y, Zhang R, Wei M, Evans DG, Duan X (2016) TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ Sci 9(8):2633–2643. https://doi.org/10.1039/c6ee01092j

    Article  CAS  Google Scholar 

  45. Ryabova AS, Napolskiy FS, Poux T, Istomin SY, Bonnefont A, Antipin DM, Baranchikov AY, Levin EE, Abakumov AM, Kerangueven G, Antipov EV, Tsirlina GA, Savinova ER (2016) Rationalizing the influence of the Mn(IV)/Mn(III) Red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim Acta 187:161–172. https://doi.org/10.1016/j.electacta.2015.11.012

    Article  CAS  Google Scholar 

  46. Cai Y, Wang H-E, Zhao X, Huang F, Wang C, Deng Z, Li Y, Cao G, Su B-L (2017) Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Appl Mater Interfaces 9(12):10652–10663. https://doi.org/10.1021/acsami.6b16498

    Article  CAS  PubMed  Google Scholar 

  47. Wang H-E, Zhao X, Yin K, Li Y, Chen L, Yang X, Zhang W, Su B-L, Cao G (2017) Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl Mater Interfaces 9(50):43665–43673. https://doi.org/10.1021/acsami.7b13658

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z (2012) Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett 12(4):1946–1952. https://doi.org/10.1021/nl2044327

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Li Y (2002) Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J Am Chem Soc 124(12):2880–2881. https://doi.org/10.1021/ja0177105

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Y, Deng Y-P, Fu J, Lee DU, Liang R, Cano ZP, Liu Y, Bai Z, Hwang S, Yang L, Su D, Chu W, Chen Z (2018) Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv Energy Mater 8(15). https://doi.org/10.1002/aenm.201702900

  51. Dai X, Shi W, Cai H, Li R, Yang G (2014) Facile preparation of the novel structured alpha-MnO2/graphene nanocomposites and their electrochemical properties. Solid State Sci 27:17–23. https://doi.org/10.1016/j.solidstatesciences.2013.11.003

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Hunan Provincial Science and Technology Plan Project of China (No. 2018JJ5047) and the scientific research start-up fund from Guangdong University of Technology, and Hunan Institute of Engineering for the scientific research platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-En Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., **e, K., Zhang, Z. et al. NiFe-LDHs@MnO2 heterostructure as a bifunctional electrocatalyst for oxygen-involved reactions and Zn-air batteries. Ionics 28, 1273–1283 (2022). https://doi.org/10.1007/s11581-021-04436-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04436-9

Keywords

Navigation