Log in

MOF-derived nitrogen-doped porous carbon (NPC) supported CoFe2O4 nanoparticle composites for high-performance zinc-air batteries

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The sluggish kinetics of oxygen reduction reaction (ORR) in air cathode severely hinders the application of rechargeable zinc-air batteries (ZAB). In this work, we construct a composite with CoFe2O4 nanoparticle uniformly implanted into MOF-derived nitrogen-doped porous carbon (CoFe2O4/NPC) by a dopamine wrap** strategy. The CoFe2O4/NPC exhibits an outstanding ORR performance in 0.1 M KOH with a half-wave potential (E1/2) of 0.898 V, which is superior to single metal nanoparticle samples (Fe/Fe2O3/NPC, Co/NPC) and pure CoFe2O4 nanoparticle without NPC. Results suggest that NPC support effect and Fe, Co dual component effect play important roles in boosting the ORR activity of CoFe2O4/NPC, because the two kinds of effects can regulate the charge transfer of support and CoFe2O4, and electronic transfer of Fe and Co, and therefore improve the ORR performance. Impressively, using CoFe2O4/NPC as the cathode catalyst, CoFe2O4/NPC-based ZAB exhibits a 269 mW cm−2 power density and a long durability over 700 h, which is attributed to the fact that thin carbon layers around the surface of the CoFe2O4 nanoparticles improve the stability. As a result, the CoFe2O4/NPC catalyst exceeds the upper limit line of the trade-off effect between activity and stability. This work provides a new route for the application of metal-nanoparticle composite in rechargeable zinc-air batteries.

Graphical Abstract

We synthesized a CoFe2O4/NPC composite by a dopamine wrap** strategy, and the performance of CoFe2O4/NPC catalyst exceeds the upper limit line of the trade-off effect between activity and stability of Fe, Co-based catalysts for ZAB applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang L, Cheng D, Xu H, Zeng X, Wan X, Shui J, **ang Z, Cao D (2018) Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc Natl Acad Sci USA 115(26):6626–6631. https://doi.org/10.1073/pnas.1800771115

    Article  CAS  Google Scholar 

  2. Sun P, Qiao K, Li D, Liu X, Liu H, Yang L, Xu H, Zhuang Z, Yan Y, Cao D (2022) Designing oxygen-doped Fe-N-C oxygen reduction catalysts for proton- and anion-exchange-membrane fuel cells. Chem Catal 2(10):2750–2763. https://doi.org/10.1016/j.checat.2022.09.009

    Article  CAS  Google Scholar 

  3. **ao Z, Sun P, Qiao Z, Qiao K, Xu H, Wang S, Cao D (2022) Atomically dispersed Fe-Cu dual-site catalysts synergistically boosting oxygen reduction for hydrogen fuel cells. Chem Eng J 446:137112. https://doi.org/10.1016/j.cej.2022.137112

  4. Yang Y, Xu X, Sun P, Xu H, Yang L, Zeng X, Huang Y, Wang S, Cao D (2022) AgNPs@Fe-N-C oxygen reduction catalysts for anion exchange membrane fuel cells. Nano Energy 100:107466. https://doi.org/10.1016/j.nanoen.2022.107466

  5. Zhong X, Yi W, Qu Y, Zhang L, Bai H, Zhu Y, Wan J, Chen S, Yang M, Huang L, Gu M, Pan H, Xu B (2020) Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl Catal B Environ 260:118188. https://doi.org/10.1016/j.apcatb.2019.118188

  6. Sun P, Qiao Z, Wang S, Li D, Liu X, Zhang Q, Zheng L, Zhuang Z, Cao D (2023) Atomically dispersed Zn-pyrrolic-N4 cathode catalysts for hydrogen fuel cells. Angew Chem Int Ed 62:e202216041. https://doi.org/10.1002/anie.202216041

  7. Yang X, Zheng X, Li H, Luo B, He Y, Yao Y, Zhou H, Yan Z, Kuang Y, Huang Z (2022) Non-noble-metal catalyst and Zn/graphene film for low-cost and ultra-long-durability solid-state Zn-air batteries in harsh electrolytes. Adv Funct Mater 32(31):2200397. https://doi.org/10.1002/adfm.202200397

    Article  CAS  Google Scholar 

  8. Lu X, Xu H, Yang P, **ao L, Li Y, Ma J, Li R, Liu L, Liu A, Kondratiev V, Levin O, Zhang J, An M (2022) Zinc-assisted MgO template synthesis of porous carbon-supported Fe-Nx sites for efficient oxygen reduction reaction catalysis in Zn-air batteries. Appl Catal B Environ 313:121454. https://doi.org/10.1016/j.apcatb.2022.121454

  9. Liu H, **e R, Niu Z, Jia Q, Yang L, Wang S, Cao D (2022) Two-in-one strategy to construct bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Chin J Catal 43(11):2906–2912. https://doi.org/10.1016/S1872-2067(21)63979-7

    Article  CAS  Google Scholar 

  10. Lv Y, Zhu L, Xu H, Yang L, Liu Z, Cheng D, Cao X, Yun J, Cao D (2019) Core/shell template-derived Co, N-doped carbon bifunctional electrocatalysts for rechargeable Zn-air battery. Eng Sci 7:26–37. https://doi.org/10.30919/es8d768

  11. Yang L, Shi L, Wang D, Lv Y, Cao D (2018) Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50:691–698. https://doi.org/10.1016/j.nanoen.2018.06.023

    Article  CAS  Google Scholar 

  12. Wang Z, Zhu C, Tan H, Liu J, Xu L, Zhang Y, Liu Y, Zou X, Liu Z, Lu X (2021) Understanding the synergistic effects of cobalt single atoms and small nanoparticles: enhancing oxygen reduction reaction catalytic activity and stability for Zinc-air batteries. Adv Funct Mater 31(45):2104735. https://doi.org/10.1002/adfm.202104735

    Article  CAS  Google Scholar 

  13. Lin L, Ni Y, Shang L, Sun H, Zhang Q, Zhang W, Yan Z, Zhao Q, Chen J (2022) Atomic-level modulation-induced electron redistribution in Co coordination polymers elucidates the oxygen reduction mechanism. ACS Catal 12(13):7531–7540. https://doi.org/10.1021/acscatal.2c01075

    Article  CAS  Google Scholar 

  14. Zhang Y, Yu Gao X, Wen Z, Cheng Yang C, Jiang Q (2022) Synchronous bi-modulation by nanoclusters and single atoms for high-efficient oxygen reduction electrocatalysis. Chem Eng J 446:137441. https://doi.org/10.1016/j.cej.2022.137441

  15. Niu Z, Liu H, Qiao Z, Qiao K, Sun P, Xu H, Wang S, Cao D (2022) Yolk-like Pt nanoparticles as cathode catalysts for low-Pt-loading proton-exchange membrane fuel cells. Mater Today Energy 27:101043. https://doi.org/10.1016/j.mtener.2022.101043

  16. Guan J, Yang S, Liu T, Yu Y, Niu J, Zhang Z, Wang F (2021) Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angew Chem Int Ed 60(40):21899–21904. https://doi.org/10.1002/anie.202107437

    Article  CAS  Google Scholar 

  17. **ao F, Wang Q, Xu G-L, Qin X, Hwang I, Sun C-J, Liu M, Hua W, Wu H-w, Zhu S, Li J-C, Wang J-G, Zhu Y, Wu D, Wei Z, Gu M, Amine K, Shao M (2022) Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nat Catal 5(6):503–512. https://doi.org/10.1038/s41929-022-00796-1

    Article  CAS  Google Scholar 

  18. Chen S, Yan Y, Hao P, Li M, Liang J, Guo J, Zhang Y, Chen S, Ding W, Guo X (2020) Iron nanoparticles encapsulated in S, N-codoped carbon: sulfur do** enriches surface electron density and enhances electrocatalytic activity toward oxygen reduction. ACS Appl Mater Interfaces 12(11):12686–12695. https://doi.org/10.1021/acsami.9b20007

    Article  CAS  Google Scholar 

  19. Yang L, Lv Y, Cao D (2018) Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J Mater Chem A 6(9):3926–3932. https://doi.org/10.1039/c7ta11140a

    Article  CAS  Google Scholar 

  20. Yan L, Xu Y, Chen P, Zhang S, Jiang H, Yang L, Wang Y, Zhang L, Shen J, Zhao X, Wang L (2020) A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn–air batteries. Adv Mater 32(48):2003313. https://doi.org/10.1002/adma.202003313

    Article  CAS  Google Scholar 

  21. Ni Y, Chen Z, Kong F, Qiao Y, Kong A, Shan Y (2018) Pony-size Cu nanoparticles confined in N-doped mesoporous carbon by chemical vapor deposition for efficient oxygen electroreduction. Electrochim Acta 272:233–241. https://doi.org/10.1016/j.electacta.2018.04.002

    Article  CAS  Google Scholar 

  22. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah RA, Abo-Dief HM, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/j.jmst.2022.07.041

    Article  Google Scholar 

  23. Peng Z, Jiang Q, Peng P, Li F-F (2021) NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/N-C for oxygen reduction reaction and Zn-air battery. Eng Sci 14:27–38. https://doi.org/10.30919/es8d1311

  24. Xu X, **e J, Liu B, Wang R, Liu M, Zhang J, Liu J, Cai Z, Zou J (2022) PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl Catal B Environ 316:121687. https://doi.org/10.1016/j.apcatb.2022.121687

  25. Wang B, Xu L, Liu G, Ye Y, Quan Y, Wang C, Wei W, Zhu W, Xu C, Li H, **a J (2020) In situ confinement growth of peasecod-like N-doped carbon nanotubes encapsulate bimetallic FeCu alloy as a bifunctional oxygen reaction cathode electrocatalyst for sustainable energy batteries. J Alloys Compd 826:154152. https://doi.org/10.1016/j.jallcom.2020.154152

  26. Yang L, Zeng X, Wang D, Cao D (2018) Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater 12:277–283. https://doi.org/10.1016/j.ensm.2018.02.011

    Article  Google Scholar 

  27. Yang L, Wang D, Lv Y, Cao D (2019) Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–air batteries. Carbon 144:8–14. https://doi.org/10.1016/j.carbon.2018.12.008

    Article  CAS  Google Scholar 

  28. Ahsan MA, Puente Santiago AR, Hong Y, Zhang N, Cano M, Rodriguez-Castellon E, Echegoyen L, Sreenivasan ST, Noveron JC (2020) Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. J Am Chem Soc 142(34):14688–14701. https://doi.org/10.1021/jacs.0c06960

    Article  CAS  Google Scholar 

  29. Singh SK, Kashyap V, Manna N, Bhange SN, Soni R, Boukherroub R, Szunerits S, Kurungot S (2017) Efficient and durable oxygen reduction electrocatalyst based on CoMn alloy oxide nanoparticles supported over N-doped porous graphene. ACS Catal 7(10):6700–6710. https://doi.org/10.1021/acscatal.7b01983

    Article  CAS  Google Scholar 

  30. Hou C, Yang W, Kimura H, **e X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu BB, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  Google Scholar 

  31. Huang Q, Li C, Tu Y, Jiang Y, Mei P, Yan X (2021) Spinel CoFe2O4/carbon nanotube composites as efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution reaction. Ceram Int 47(2):1602–1608. https://doi.org/10.1016/j.ceramint.2020.08.276

    Article  CAS  Google Scholar 

  32. Fan H, Yang L, Wang Y, Zhang X, Wu Q, Che R, Liu M, Wu Q, Wang X, Hu Z (2017) Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Sci Bull 62(20):1365–1372. https://doi.org/10.1016/j.scib.2017.10.001

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhang G, Li W, Li X, Uchiyama K, Chen C (2017) Enhancing oxygen reduction activity by exposing (111) facets of CoFe2O4 octahedron on graphene. ChemistrySelect 2(30):9878–9881. https://doi.org/10.1002/slct.201701892

    Article  CAS  Google Scholar 

  34. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W, Abualnaja KM, Alanazi AK, Zhang P, Huang M, Hu G, Zhu J (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5(2):899–906. https://doi.org/10.1007/s42114-022-00485-4

    Article  CAS  Google Scholar 

  35. **ong P, Yang F, Ding Z, Jia Y, Liu J, Yan X, Chen X, Yang C (2020) Preparation and electrocatalytic properties of spinel CoxFe3-xO4 nanoparticles. Int J Hydrogen Energy 45(27):13841–13847. https://doi.org/10.1016/j.ijhydene.2020.03.098

    Article  CAS  Google Scholar 

  36. Yan W, Bian W, ** C, Tian J-H, Yang R (2015) An efficient bi-functional electrocatalyst based on strongly coupled CoFe2O4/carbon nanotubes hybrid for oxygen reduction and oxygen evolution. Electrochim Acta 177:65–72. https://doi.org/10.1016/j.electacta.2015.02.044

    Article  CAS  Google Scholar 

  37. Wang H, Liu C, Yang X, Gu J, Niu M, Yang L, Bai Z (2022) In situ synthesis of CoFe2O4 nanoparticles embedded in N-doped carbon nanotubes for efficient electrocatalytic oxygen reduction reaction. Int J Hydrogen Energy 47(9):6059–6066. https://doi.org/10.1016/j.ijhydene.2021.11.220

    Article  CAS  Google Scholar 

  38. Wang T, Cao X, Qin H, Shang L, Zheng S, Fang F, Jiao L (2021) P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew Chem Int Ed 60(39):21237–21241. https://doi.org/10.1002/anie.202108599

    Article  CAS  Google Scholar 

  39. Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X, Wang B (2021) Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew Chem Int Ed 60(40):21685–21690. https://doi.org/10.1002/anie.202107053

    Article  CAS  Google Scholar 

  40. Yin S-H, Yang J, Han Y, Li G, Wan L-Y, Chen Y-H, Chen C, Qu X-M, Jiang Y-X, Sun S-G (2020) Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew Chem Int Ed 59(49):21976–21979. https://doi.org/10.1002/anie.202010013

    Article  CAS  Google Scholar 

  41. **g C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122. https://doi.org/10.1016/j.partic.2021.11.013

    Article  CAS  Google Scholar 

  42. Zhang M, Zhang E, Hu C, Zhao Y, Zhang H-m, Zhang Y, Ji M, Yu J, Cong G, Liu H, Zhang J, Zhu C, Xu J (2020) Controlled synthesis of Co@N-doped carbon by pyrolysis of ZIF with 2-aminobenzimidazole ligand for enhancing oxygen reduction reaction and the application in Zn–air battery. ACS Appl Mater Interfaces 12(10):11693–11701. https://doi.org/10.1021/acsami.9b22476

    Article  CAS  Google Scholar 

  43. Ding D, Shen K, Chen X, Chen H, Chen J, Fan T, Wu R, Li Y (2018) Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal 8(9):7879–7888. https://doi.org/10.1021/acscatal.8b02504

    Article  CAS  Google Scholar 

  44. Rehman Su, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Amir M, Wang J (2021) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78. https://doi.org/10.30919/es8d1263

  45. Bag PP, Singh GP, Singha S, Roymahapatra G (2021) Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic application: a mini review. Eng Sci 13:1–10. https://doi.org/10.30919/es8d1166

  46. Rahaman SJ, Samanta A, Mir MH, Dutta B (2023) Metal-organic frameworks (MOFs): a promising candidate for stimuli-responsive drug delivery. ES Mater Manuf 19. https://doi.org/10.30919/esmm5f792

  47. Wang T, Kou Z, Mu S, Liu J, He D, Amiinu IS, Meng W, Zhou K, Luo Z, Chaemchuen S, Verpoort F (2018) 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc–air batteries. Adv Funct Mater 28(5):1705048. https://doi.org/10.1002/adfm.201705048

    Article  CAS  Google Scholar 

  48. Yu D, Ma Y, Hu F, Lin C-C, Li L, Chen H-Y, Han X, Peng S (2021) Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries. Adv Energy Mater 11(30):2101242. https://doi.org/10.1002/aenm.202101242

    Article  CAS  Google Scholar 

  49. Zhai W, Huang S, Lu C, Tang X, Li L, Huang B, Hu T, Yuan K, Zhuang X, Chen Y (2022) Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction. Small 18(15):2107225. https://doi.org/10.1002/smll.202107225

    Article  CAS  Google Scholar 

  50. Huang H, Yu D, Hu F, Huang S-C, Song J, Chen H-Y, Li LL, Peng S (2022) Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal–air batteries. Angew Chem Int Ed 61 (12):e202116068. https://doi.org/10.1002/anie.202116068

  51. Wang Z, ** X, Zhu C, Liu Y, Tan H, Ku R, Zhang Y, Zhou L, Liu Z, Hwang S-J, Fan HJ (2021) Atomically dispersed Co2–N6 and Fe–N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv Mater 33(49):2104718. https://doi.org/10.1002/adma.202104718

    Article  CAS  Google Scholar 

  52. Liu F, Shi L, Lin X, Yu D, Zhang C, Xu R, Liu D, Qiu J, Dai L (2022) Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells. Appl Catal B Environ 302:120860. https://doi.org/10.1016/j.apcatb.2021.120860

  53. Deng J, Ren P, Deng D, Bao X (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 54(7):2100–2104. https://doi.org/10.1002/anie.201409524

    Article  CAS  Google Scholar 

  54. Li P, Ma R, Zhou Y, Chen Y, Zhou Z, Liu G, Liu Q, Peng G, Liang Z, Wang J (2015) In situ growth of spinel CoFe2O4 nanoparticles on rod-like ordered mesoporous carbon for bifunctional electrocatalysis of both oxygen reduction and oxygen evolution. J Mater Chem A 3(30):15598–15606. https://doi.org/10.1039/C5TA02625C

    Article  CAS  Google Scholar 

  55. Ren C, Li K, Lv C, Zhao Y, Wang J, Guo S (2019) Nanorod CoFe2O4 modified activated carbon as an efficient electrocatalyst to improve the performance of air cathode microbial fuel cell. J Electroanal Chem 840:134–143. https://doi.org/10.1016/j.jelechem.2019.03.057

    Article  CAS  Google Scholar 

  56. Li W, Liu B, Liu D, Guo P, Liu J, Wang R, Guo Y, Tu X, Pan H, Sun D, Fang F, Wu R (2022) Alloying Co species into ordered and interconnected macroporous carbon polyhedra for efficient oxygen reduction reaction in rechargeable zinc–air batteries. Adv Mater 34(17):2109605. https://doi.org/10.1002/adma.202109605

    Article  CAS  Google Scholar 

  57. Dai J, Zhang J, Karthick R, Liang M, Wei Q, Chen X, Shi Y, Zhai S, Wang G, Chen F (2022) Co/Fe3O4 nanoparticles embedded in N-doped hierarchical porous carbon derived from zeolitic imidazolate frameworks as efficient oxygen reduction electrocatalysts for zinc–air battery-based desalination. J Mater Chem A 10(22):12213–12224. https://doi.org/10.1039/D2TA00736C

    Article  CAS  Google Scholar 

  58. Deng D, Qian J, Liu X, Li H, Su D, Li H, Li H, Xu L (2022) Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv Funct Mater 32(32):2203471. https://doi.org/10.1002/adfm.202203471

    Article  CAS  Google Scholar 

  59. Meng F-L, Wang Z-L, Zhong H-X, Wang J, Yan J-M, Zhang X-B (2016) Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv Mater 28(36):7948–7955. https://doi.org/10.1002/adma.201602490

    Article  CAS  Google Scholar 

  60. He Y, Yang X, Li Y, Liu L, Guo S, Shu C, Liu F, Liu Y, Tan Q, Wu G (2022) Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries. ACS Catal 12(2):1216–1227. https://doi.org/10.1021/acscatal.1c04550

    Article  CAS  Google Scholar 

  61. Deng Y, Zheng J, Liu B, Li H, Yang M, Wang Z (2023) Schiff-base polymer derived FeCo-N-doped porous carbon flowers as bifunctional oxygen electrocatalyst for long-life rechargeable Zinc-air batteries. J Energy Chem 76:470–478. https://doi.org/10.1016/j.jechem.2022.09.031

    Article  CAS  Google Scholar 

  62. Deng D, Yu L, Chen X, Wang G, ** L, Pan X, Deng J, Sun G, Bao X (2012) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed 125(1):389–393. https://doi.org/10.1002/ange.201204958

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dapeng Cao produced original idea and designed the experiment. **aobin Dong and Panpan Sun performed experimental synthesis and characterizations. Jialin Wu, Shiqing Huang, **aofei Zeng, and Shitao Wang discussed the results and analyzed experimental data. **udong Chen performed a part of tests on Zn-air batteries. **aobin Dong and Panpan Sun wrote the initial manuscript. Dapeng Cao revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to **aofei Zeng or Dapeng Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28162 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Sun, P., Wu, J. et al. MOF-derived nitrogen-doped porous carbon (NPC) supported CoFe2O4 nanoparticle composites for high-performance zinc-air batteries. Adv Compos Hybrid Mater 6, 72 (2023). https://doi.org/10.1007/s42114-023-00644-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00644-1

Keywords

Navigation