Log in

Graphene-based Multilayer Surface Plasmon Resonance Solar Absorber in the UV to MIR Region for Renewable Energy Application

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The developed design invention is proposed in three different types of materials: zirconium (Zr) in a resonator, indium antimonide (InSb) for the substrate, and tungsten (W) developed for the ground section effectively. To indicate the high rates (absorptions) in the developed output line, the wavelengths (in µm) of 0.2, 0.5, 0.75, and 1.5 have been used. The proposed absorber can be investigated in the four regions of the atmosphere (UV area, visible spectrum, near and also middle infrared regions) perfectly. With the development of the wavelengths (µm) and band rates (nm) on the overall range, 97% can be verified with 500 nm bandwidth by 0.2 and 0.7 µm wavelength deviation, and 95.24% by 1150 nm (bandwidth) between 1.74 and 2.89 wavelength values, respectively. The main validation of the design (2800 nm) band rate performs 93.46% from ultraviolet to MIR spectrum. To indicate the current work’s performance effectively, the various sections are also included as the improved absorbed lines by the develo** steps of the absorber and the configuration of design in different views with the labels of used materials and numerical parameters in the first section of “Design and Parameters”. After the performance of an investigation of the design, the analyzed values of all used parameters (Zr resonator, InSb substrate, tungsten ground, design width, cylinder radius, and effective chemical potential values) are shown with output absorption lines and color graph. Moreover, to study the polarization, incident angles (degree) performing are also included in “Results and Discussions”. The renewable energy applications of the proposed solar design can be performed in heat storage to support industrial heat such as drying, metal heating, and fluid heating. Moreover, the absorber can also be used for photovoltaic applications (solar electricity, solar heating) and heating applications (water heating).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials 

The data supporting the findings in this work are available from the corresponding author with reasonable request.

References

  1. Jeffry L, Ong MY, Nomanbhay S, Mofijur M, Mubashir M, Show PL (2021) Greenhouse gases utilization: a review. Fuel. https://doi.org/10.1016/j.fuel.2021.121017

    Article  Google Scholar 

  2. Kumar L, Hasanuzzaman M, Rahim NA (2019) Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: a review. Energy Convers Manage 195:885–908. https://doi.org/10.1016/j.enconman.2019.05.081

    Article  Google Scholar 

  3. Hassen A (2021) Analysis of dairy value chain: the case of Haramaya Woreda, East Hararghe Zone Oromia Region, Ethiopia. Front Neurosci 14(1):1–13

    Google Scholar 

  4. Fath HES (1998) Technical assessment of solar thermal energy storage technologies. Renew Energy 14(1–4):35–40. https://doi.org/10.1016/s0960-1481(98)00044-5

    Article  Google Scholar 

  5. Veteran DKU, Yogyakarta Y (2021) Pembentukan peraturan perundang-undangan. Front Neurosci 14(1):1–13

    Google Scholar 

  6. Abbott D (2010) Kee** the energy debate clean: How do we supply the world’s energy needs? Proc IEEE 98(1):42–66. https://doi.org/10.1109/JPROC.2009.2035162

    Article  CAS  Google Scholar 

  7. Bond JC, Lauretta DS, O’Brien DP (2010) Erratum to Making the Earth: combining dynamics and chemistry in the Solar System[Icarus, 205, (2010), 321–337]. Icarus 208(1):504. https://doi.org/10.1016/j.icarus.2010.04.001

    Article  Google Scholar 

  8. Liu Z, Mohammadzadeh A, Turabieh H, Mafarja M, Band SS, Mosavi A (2021) A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access 9:10498–10508. https://doi.org/10.1109/ACCESS.2021.3049301

    Article  Google Scholar 

  9. Byamukama M, Bakkabulindi G, Akol R, Sansa-Otim J (2019) New techniques for sizing solar photovoltaic panels for environment monitoring sensor nodes. J Sensors. https://doi.org/10.1155/2019/9835138

    Article  Google Scholar 

  10. Patel SK, Parmar J, Katkar V (2022) Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning. Sci Rep. https://doi.org/10.1038/s41598-022-14509-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kabeel AE (2007) Water production from air using multi-shelves solar glass pyramid system. Renew Energy 32(1):157–172. https://doi.org/10.1016/j.renene.2006.01.015

    Article  CAS  Google Scholar 

  12. Watts RA, Smith J, Thomson A (2016) The design and installation of solar home systems in rural Cambodia. J Humanit Eng. https://doi.org/10.36479/jhe.v4i2.57

    Article  Google Scholar 

  13. Hoffmann C (2007) Sanierung als zweite Chance: Strategien für ein angenehmes Raumklima ohne aktive Kühlung in Bürogebäuden Mitteleuropas (Doctoral dissertation, Verlag nicht ermittelbar)

  14. Chakrabarty S, Islam T (2011) Financial viability and eco-efficiency of the solar home systems (SHS) in Bangladesh. Energy 36(8):4821–4827. https://doi.org/10.1016/j.energy.2011.05.016

    Article  Google Scholar 

  15. Košičan J, Pardo MÁ, Vilčeková S (2020) A multicriteria methodology to select the best installation of solar thermal power in a family house. Energies. https://doi.org/10.3390/en13051047

    Article  Google Scholar 

  16. Axaopoulos PJ, Fylladitakis ED (2013) Performance and economic evaluation of a hybrid photovoltaic/thermal solar system for residential applications. Energy Build 65:488–496. https://doi.org/10.1016/j.enbuild.2013.06.027

    Article  Google Scholar 

  17. Huide F, Xuxin Z, Lei M, Tao Z, Qixing W, Hongyuan S (2017) A comparative study on three types of solar utilization technologies for buildings: photovoltaic, solar thermal and hybrid photovoltaic/thermal systems. Energy Convers Manage 140:1–13. https://doi.org/10.1016/j.enconman.2017.02.059

    Article  Google Scholar 

  18. Wu J, Yan X, Yuan X, Zhang Y, Zhang X (2021) A dual-tunable ultra-broadband terahertz absorber based on graphene and strontium titanate. Results Phys 31:105039. https://doi.org/10.1016/j.rinp.2021.105039

    Article  Google Scholar 

  19. Wang J et al (2021) High-performance spectrally selective absorber using the ZrB2-based all-ceramic coatings. ACS Appl Mater Interfaces 13(34):40522–40530. https://doi.org/10.1021/acsami.1c08947

    Article  CAS  PubMed  Google Scholar 

  20. Wang J et al (2021) An ultra-high temperature stable solar absorber using the ZrC-based cermets. Front Energy Res. https://doi.org/10.3389/fenrg.2021.787237

    Article  Google Scholar 

  21. Cheng Y, Li Z, Cheng Z (2021) Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt Mater (Amst). https://doi.org/10.1016/j.optmat.2021.111129

    Article  Google Scholar 

  22. Almawgani AHM, Han BB, Patel SK, Armghan A, Alabsi BA, Taya SA (2023) Design of surface plasmon resonance–based solar absorber using bloom-shaped Au-InSb-Al structure. Plasmonics. https://doi.org/10.1007/s11468-023-02003-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gao P et al (2023) Multifunctional and dynamically tunable coherent perfect absorber based on InSb and graphene metasurface. Results Phys. https://doi.org/10.1016/j.rinp.2023.106797

    Article  Google Scholar 

  24. Hu Z, Qiu Y, Li Q, Wang J, Xu M (2022) Tungsten nanopore-based near-ideal spectral selective solar absorber for a wide temperature range. Sol Energy 248:149–159. https://doi.org/10.1016/j.solener.2022.11.003

    Article  CAS  Google Scholar 

  25. Wang J, Liang Y, Huo P, Wang D, Tan J, Xu T (2017) Large-scale broadband absorber based on metallic tungsten nanocone structure. Appl Phys Lett. doi 10(1063/1):5004520

    Google Scholar 

  26. Cheng Y et al (2021) Ultra-broadband perfect solar energy absorber based on tungsten ring arrays. Eng Res Express. https://doi.org/10.1088/2631-8695/ac372f

    Article  Google Scholar 

  27. Karki B, Uniyal A, Sarkar P, Pal A, Yadav RB (2023) Sensitivity improvement of surface plasmon resonance sensor for glucose detection in urine samples using heterogeneous layers: an analytical perspective. J Opt. https://doi.org/10.1007/s12596-023-01418-0

    Article  Google Scholar 

  28. Karki B, Pal A, Sarkar P, Yadav RB, Muduli A, Trabelsi Y (2024) ZnO-silicon enhanced surface plasmon resonance sensor for chemical sensing. SILICON. https://doi.org/10.1007/s12633-024-02973-2

    Article  Google Scholar 

  29. Lashgari HR, Chu D, **e S, Sun H, Ferry M, Li S (2014) Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study. J Non-Cryst Solids 391:61–82. https://doi.org/10.1016/j.jnoncrysol.2014.03.010

    Article  CAS  Google Scholar 

  30. Liu CT et al (1998) Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall Mater Trans A Phys Metall Mater Sci 29(7):1811–1820. https://doi.org/10.1007/s11661-998-0004-6

    Article  Google Scholar 

  31. Plissard SR et al (2013) Formation and electronic properties of InSb nanocrosses. Nat Nanotechnol 8(11):859–864. https://doi.org/10.1038/nnano.2013.198

    Article  CAS  PubMed  Google Scholar 

  32. Massidda S, Continenza A, Freeman AJ, De Pascale TM, Meloni F, Serra M (1990) Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb. Phys Rev B 41(17):12079–12085. https://doi.org/10.1103/PhysRevB.41.12079

    Article  CAS  Google Scholar 

  33. Nasution RA (2021) Analisis persepsi pedagang pada penggunaan qris sebagai alat transaksi umkm di kota medan. Front Neurosci 14(1):1–13

    Google Scholar 

  34. Eroshenko A et al (2022) Effect of deformation processing on microstructure and mechanical properties of Ti-42Nb-7Zr alloy. Obrab Met 24(4):206–218. https://doi.org/10.17212/1994-6309-2022-24.4-206-218

    Article  Google Scholar 

  35. Gomaa HM, Yahia IS, Zahran HY (2021) Correlation between the static refractive index and the optical bandgap: review and new empirical approach. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2021.413246

    Article  Google Scholar 

  36. Liu JG, Ueda M (2009) High refractive index polymers: fundamental research and practical applications. J Mater Chem 19(47):8907–8919. https://doi.org/10.1039/b909690f

    Article  CAS  Google Scholar 

  37. ** JQ et al (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photonics 1(3):176–179. https://doi.org/10.1038/nphoton.2007.26

    Article  CAS  Google Scholar 

  38. Kumar Laha S, Kumar Sadhu P, Ganguly A, Kumar Naskar A (2022) A comparative study on thermal performance of a 3-D model based solar photovoltaic panel through finite element analysis. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2021.06.019

    Article  Google Scholar 

  39. Solís-Santomé A et al (2019) Conceptual design and finite element method validation of a new type of self-locking hinge for deployable CubeSat solar panels. Adv Mech Eng. https://doi.org/10.1177/1687814018823116

    Article  Google Scholar 

  40. Ross RT, Nozik AJ (1982) Efficiency of hot-carrier solar energy converters. J Appl Phys 53(5):3813–3818. https://doi.org/10.1063/1.331124

    Article  CAS  Google Scholar 

  41. Li Y et al (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun. https://doi.org/10.1038/ncomms3566

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.73.235411

    Article  Google Scholar 

  43. Bao WS, Liu SY, Lei XL, Wang CM (2009) Nonlinear dc transport in graphene. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/21/30/305302

    Article  PubMed  Google Scholar 

  44. Chen J et al (2022) Broadband, wide-incident-angle, and polarization-insensitive high-efficiency absorption of monolayer graphene with nearly 100% modulation depth at communication wavelength. Results Phys. https://doi.org/10.1016/j.rinp.2022.105833

    Article  Google Scholar 

  45. Agravat D, Patel SK, Almawgani AHM, Alsuwian T, Armghan A, Daher MG (2023) Investigation of a novel graphene-based surface plasmon resonance solar absorber to achieve high absorption efficiency over a wide spectrum of wavelengths, from ultraviolet to infrared. Plasmonics. https://doi.org/10.1007/s11468-023-02061-y

    Article  Google Scholar 

  46. Patel SK, Agravat D, Alsalman O, Surve J, Taya SA, Parmar J (2023) Numerical analysis of wideband solar absorber using thick film with glassy material, resonator and back reflector. Opt Quantum Electron 55(9):754. https://doi.org/10.1007/s11082-023-04982-8

    Article  CAS  Google Scholar 

  47. Liu Z et al (2019) Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology. https://doi.org/10.1088/1361-6528/ab109d

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rangasamy S, Khansadurai AM, Venugopal G, Udayakumar AK (2023) Graphene-based O-shaped metamaterial absorber design with broad response for solar energy absorption. Opt Quantum Electron. https://doi.org/10.1007/s11082-022-04315-1

    Article  Google Scholar 

  49. Yu P et al (2019) A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt Mater (Amst). https://doi.org/10.1016/j.optmat.2019.109400

    Article  Google Scholar 

  50. Patel SK et al (2023) Design of a broadband solar absorber based on Fe2O3/CuO thin film absorption structure. Opt Quantum Electron. https://doi.org/10.1007/s11082-023-04706-y

    Article  Google Scholar 

  51. Obaidullah M, Esat V, Sabah C (2021) Multi-band (9,4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2020.106623

    Article  Google Scholar 

  52. Wu P, Dai S, Zeng X, Su N, Cui L, Yang H (2023) Design of ultra-high absorptivity solar absorber based on Ti and TiN multilayer ring structure. Int J Therm Sci. https://doi.org/10.1016/j.ijthermalsci.2022.107890

    Article  Google Scholar 

  53. Agravat D, Patel SK, Almawgani AHM, Irfan M, Armghan A, Taya SA (2023) Graphite-based surface plasmon resonance structure using Al2O3-TiO2-ZrO2 materials for solar thermal absorption. Plasmonics. https://doi.org/10.1007/s11468-023-01986-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for supporting this research work through the project number 375213500.

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for supporting this research work through the project number 375213500. 

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.K.P and B.B.H.; methodology, A.R.B, B.B.H, and K.P.R.; software, A.R.B, B.B.H., S.K.P. and K.P.R.; investigation, A.A and Y.S.A.; formal analysis, all authors; writing—original draft preparation, all authors; writing—review and editing, all authors; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ammar Armghan.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests 

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudabbous, A.R., Han, B.B., R., K.P. et al. Graphene-based Multilayer Surface Plasmon Resonance Solar Absorber in the UV to MIR Region for Renewable Energy Application. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02399-x

Keywords

Navigation