Log in

Graphite-Based Surface Plasmon Resonance Structure Using Al2O3-TiO2-ZrO2 Materials for Solar Thermal Absorption

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Energy harvesting is renowned in the past flue decades, and renewable energy is the superlative cause of the energy. Researchers investigated many surface plasmon resonance structures for the same, but the materials they have used prevent more losses. In this work, graphite, Al2O3, ZrO2, and TiO2 are used in order to gather greater amounts of sunlight. The Sharp Triangular Structure — Ring (STSR) Shape has been created using various lithography techniques to increase absorptance and obtain 95.35% of the solar spectrum (0.2–2.5-µm wavelength) to get the greatest results with these materials. The structure’s absorption rates for the UV, VIS, and IR regions are 97.49, 96.28, and 94.99%, respectively. The role of the resonator is also explained in this study with magnetic and electric field norms. The graphite substrate has an absorptance of 67.63%, a reflectance of 32.20%, and a transmittance of 1.39%. Applying the resonator causes a reduction in reflectance of up to 27.82% and results in 95.35% absorptance. It could function as a radiation barrier, solar induction heater for water and air, and many other things. It is applicable in space missions and satellite since it can capture the majority of the radiation from space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with reasonable request.

References

  1. Wilkerson JT et al (2010) Analysis of emission data from global commercial aviation: 2004 and 2006. Atmos Chem Phys 10(13):6391–6408. https://doi.org/10.5194/acp-10-6391-2010

    Article  CAS  ADS  Google Scholar 

  2. Sayed ET et al (2023) Renewable energy and energy storage systems. Energies 16(3). https://doi.org/10.3390/en16031415

  3. Wang Y, Chen K, Lin YS, Yang BR (2022) Plasmonic metasurface with quadrilateral truncated cones for visible perfect absorber. Phys E Low-Dimens Syst Nanostruct 139. https://doi.org/10.1016/j.physe.2022.115140

  4. Elsayied Ali KT, Suleiman Khayal DOME, Bashier Elagab DE (2022) Analysis of a flat plate solar collector. Int J Eng Appl Sci Technol 7(6):117–121. https://doi.org/10.33564/ijeast.2022.v07i06.006

  5. ASHRAE (2020) ASHRAE handbook-HVAC systems and equipment

  6. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  7. Zhang H, Cao Y, Feng Y, Yi Z, Liu H, Wu X (2023) Efficient solar energy absorber based on titanium nitride metamaterial. Plasmonics. https://doi.org/10.1007/s11468-023-01932-8

    Article  Google Scholar 

  8. Chen R et al (2023) Plasmon-enhanced infrared absorption in graphene nanodot array. Plasmonics. https://doi.org/10.1007/s11468-023-01939-1

    Article  Google Scholar 

  9. Djurišić AB, Li EH (1999) Optical properties of graphite. J Appl Phys 85(10):7404–7410. https://doi.org/10.1063/1.369370

    Article  ADS  Google Scholar 

  10. Chung DDL (1983), Physics of graphite by B. T. Kelly, Acta Crystallogr. Sect. A Found. Crystallogr. 39(1):192–192. https://doi.org/10.1107/s0108767383000422

  11. Wu P, Dai S, Zeng X, Su N, Cui L, Yang H (2023) Design of ultra-high absorptivity solar absorber based on Ti and TiN multilayer ring structure. Int J Therm Sci 183.  https://doi.org/10.1016/j.ijthermalsci.2022.107890

  12. Zheng Y et al (2023) Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl Therm Eng 230:120841. https://doi.org/10.1016/j.applthermaleng.2023.120841

  13. Patel SK, Agravat D, Alsalman O, Surve J, Taya SA, Parmar J (2023) Numerical analysis of wideband solar absorber using thick film with glassy material, resonator and back reflector. Opt Quantum Electron 55(9):754. https://doi.org/10.1007/s11082-023-04982-8

    Article  CAS  Google Scholar 

  14. H. Gao et al (2018) Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 8(12).  https://doi.org/10.3390/NANO8121038

  15. Parmar J, Patel SK, Katrodiya D, Nguyen TK, Skibina JS, Dhasarathan V (2020) Numerical investigation of gold metasurface based broadband near-infrared and near-visible solar absorber. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2020.412248

    Article  Google Scholar 

  16. COMSOL Multiphysics® v. 6.0.

  17. COMSOL (2014) Introduction to COMSOL Multiphysics 5.3, Manual 168.

  18. Hu B, Yao M, **ao R, Chen J, Yao X (2014) Optical properties of amorphous Al2O3 thin films prepared by a sol-gel process. Ceram Int vol. 40, no. 9 PART A, 14133–14139. https://doi.org/10.1016/j.ceramint.2014.05.148

  19. Evtushenko YM, Romashkin SV, Trofimov NS, Chekhlova TK (2015) Optical properties of TiO2 thin films, in Physics Procedia. 73:100–107. https://doi.org/10.1016/j.phpro.2015.09.128.

  20. Lee S, Shin HJ, Yoon SM, Yi DK, Choi JY, Paik U (2008) Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J Mater Chem 18(15):1751–1755. https://doi.org/10.1039/b715338d

    Article  CAS  Google Scholar 

  21. Jonsson AK, Niklasson GA, Veszelei M (2002) Electrical properties of ZrO2 thin films. Thin Solid Films 402(1–2):242–247. https://doi.org/10.1016/S0040-6090(01)01715-1

    Article  CAS  ADS  Google Scholar 

  22. Patel KJ, Desai MS, Panchal CJ (2012) The influence of substrate temperature on the structure, morphology, and optical properties of ZrO2 thin films prepared by e-beam evaporation. Adv Mater Lett 3(5):410–414. https://doi.org/10.5185/amlett.2012.5364

    Article  Google Scholar 

  23. Agarwal S, Prajapati YK (2019) Multifunctional metamaterial surface for absorbing and sensing applications. Opt Commun 439:304–307. https://doi.org/10.1016/j.optcom.2019.01.020

    Article  CAS  ADS  Google Scholar 

  24. Ma P et al (2017) Fast fabrication of TiO2 hard stamps for nanoimprint lithography. Mater Res Bull 90:253–259. https://doi.org/10.1016/j.materresbull.2017.03.010

    Article  MathSciNet  CAS  Google Scholar 

  25. Virbukas D, Laukaitis G, Dudonis J, Katkauske O, Milčius D (2011) Scandium stabilized zirconium thin films formation by e-beam technique. Solid State Ionics 184(1):10–13. https://doi.org/10.1016/j.ssi.2010.09.023

    Article  CAS  Google Scholar 

  26. Madani A, Nakhaei M, Karami P, Rajabzadeh G, Salehi S, Bagheri H (2016) Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain. Int J Nanomed 11:3215–3223. https://doi.org/10.2147/IJN.S104885

    Article  CAS  Google Scholar 

  27. Tang X, Yan X (2017) Dip-coating for fibrous materials: mechanism, methods and applications. J Sol-Gel Sci Technol 81(2):378–404. https://doi.org/10.1007/s10971-016-4197-7

    Article  CAS  Google Scholar 

  28. Singh RS, Bhushan S, Singh AK, Deo SR (2011) Characterization and optical properties of Cdse nano-crystalline thin films. Dig J Nanomater Biostruct 6(2):403–412

    Google Scholar 

  29. Air Mass 1.5 Spectrum, American society for testing and materials (ASTM).

  30. Yu P et al (2020) Ultra-wideband solar absorber based on refractory titanium metal. Renew Energy 158:227–235. https://doi.org/10.1016/j.renene.2020.05.142

    Article  CAS  Google Scholar 

  31. Patel SK, Surve J, Prajapati P, Taya SA (2022) Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Opt Mater (Amst)131:112683. https://doi.org/10.1016/j.optmat.2022.112683

  32. Z. Liu et al (2019) Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology 30(30).  https://doi.org/10.1088/1361-6528/ab109d

  33. Obaidullah M, Esat V, Sabah C (2021) Multi-band (9,4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2020.106623

    Article  Google Scholar 

  34. Patel SK, Charola S, Jadeja R, Nguyen TK , Dhasarathan V (2021) Wideband graphene-based near-infrared solar absorber using C-shaped rectangular sawtooth metasurface. Phys E Low-Dimens Syst Nanostruct 126: 114493 https://doi.org/10.1016/j.physe.2020.114493

  35. Yu P et al (2019) A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt Mater (Amst). https://doi.org/10.1016/j.optmat.2019.109400

    Article  Google Scholar 

Download references

Funding

This work was funded by the Deanship of Scientific Research at Najran University under the Research Groups Funding program grant code (NU/RG/SERC/12/1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Shobhit K. Patel; methodology, Abdulkarem H. M. Almawgani; software, Dhruvik Agravat and Shobhit K. Patel.; validation, Abdulkarem H. M. Almawgani, Muhammad Irfan, Ammar Armghan, and Sofyan A. Taya; writing—original draft preparation, Dhruvik Agravat; writing—review and editing, all the authors. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shobhit K. Patel.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agravat, D., Patel, S.K., Almawgani, A.H.M. et al. Graphite-Based Surface Plasmon Resonance Structure Using Al2O3-TiO2-ZrO2 Materials for Solar Thermal Absorption. Plasmonics 19, 227–238 (2024). https://doi.org/10.1007/s11468-023-01986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01986-8

Keywords

Navigation