Log in

Cylindrical Composite Hybrid Plasmonic Waveguides with Ultra-Strong Field Confinements: A FEM Study

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmons have the unique advantages of local field enhancement and subwavelength field confinement, thus have been widely used in subwavelength photonic as well as nanoscale imaging, nano-lasers, and nonlinear optics. In this work, we report a cylindrical composite hybrid plasmonic waveguide, which supports a plasmon mode with ultra-strong field confinement that is formed due to the coupling of the surface plasmon mode in the Na nanowire waveguide and hybrid surface plasmon mode in the Na-based cylindrical hybrid waveguide. The modal properties of the proposed waveguide are thoroughly investigated by using the finite element method. The proposed structure allows the mode coupling to be enhanced, which in turn gives it superior performance. Further, the optimized parameters are determined, under which the waveguide exhibits an ultra-small normalized mode area of 1.52 × 10−5 and a high figure of merit over 3.2 × 103. The proposed waveguide may make a contribution to the development of nanoscale devices in photonic integrated circuits, such as nanowaveguides, resonators, and nano-lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Karabchevsky A, Katiyi A, Ang AS, Adir HZ (2020) On-chip nanophotonics and future challenges. Nanophotonics 9(12):3733–3753

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  3. Teng D, Wang K, Huan Q, Zhao Y, Tang Y (2019) High-performance transmission of surface plasmons in graphene-covered nanowire pairs with substrate. Nanomaterials 9(11):1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Vidal FJ, Fernández-Domínguez AI, Martin-Moreno L et al (2022) Spoof surface plasmon photonics. Rev Mod Phys 94(2):025004

    Article  Google Scholar 

  5. Achanta VG (2020) Surface waves at metal-dielectric interfaces: material science perspective. Reviews Phys 5:100041

    Article  Google Scholar 

  6. Yang K, Yao X, Liu B, Ren B (2021) Metallic plasmonic array structures: principles, fabrications, properties, and applications. Adv Mater 33(50):2007988

    Article  CAS  Google Scholar 

  7. Teng D, Wang K, Li Z (2020) Graphene-coated nanowire waveguides and their applications. Nanomaterials 10(2):229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Guan Z, Ma K, Teng D (2023) Perovskite nanowires-based graphene plasmonic waveguides with low loss and low gain threshold. Diam Relat Mater 140:110540

    Article  CAS  Google Scholar 

  9. Sohoo AA, Seman FC, Khee YS et al (2024) Low loss THz waveguides and its potentials towards 6 g communication: a brief chronicle. Int J Electr Electron Eng Telecommunications 13:1–16

    Article  Google Scholar 

  10. Kong W, Sun Y, Meng R, Ni X (2020) Low-loss light guiding at the subwavelength scale in a nanowire-loaded hybrid Bloch-surface-polariton waveguide. IEEE Access 8:191795–191802

    Article  Google Scholar 

  11. Sun Z, Käll M, Fang Y (2022) Direction-and polarization‐resolved radiation of coupled plasmon modes on silver nanowires. Adv Photonics Res 3(3):2100300

    Article  CAS  Google Scholar 

  12. Zhang N, Fu T, Xu H, Wang W (2020) Reduced loss of plasmon propagation in a Ag nanowire on Si substrate. Nano Energy 68:104322

    Article  CAS  Google Scholar 

  13. Agreda A, Sharma DK, Des Francs GC, Kumar GV, Bouhelier A (2021) Modal and wavelength conversions in plasmonic nanowires. Opt Express 29(10):15366–15381

    Article  CAS  PubMed  Google Scholar 

  14. Guo X, Ma Y, Wang Y, Tong L (2013) Nanowire plasmonic waveguides, circuits and devices. Laser Photonics Rev 7(6):855–881

    Article  CAS  Google Scholar 

  15. Bekshaev AY, Angelsky OV (2022) Dynamical characteristics of the surface plasmon-polariton wave supported by a thin metal film. J Opt 24(9):095003

    Article  Google Scholar 

  16. Maniyara RA, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh DS, Yongsunthon R, Baker DE, Rezikyan A, Abajo FJG, Pruneri V (2019) Tunable plasmons in ultrathin metal films. Nat Photonics 13(5):328–333

    Article  CAS  Google Scholar 

  17. Ling H, Khurgin JB, Davoyan AR (2022) Atomic-void Van Der Waals channel waveguides. Nano Lett 22(15):6254–6261

    Article  CAS  PubMed  Google Scholar 

  18. Pati A, Gordon R (2023) Plasmonic slot waveguide propagation analysis. Plasmonics 18(2):551–560

    Article  Google Scholar 

  19. Zenin VA, Volkov VS, Han Z, Bozhevolnyi SI, Devaux E, Ebbesen TW (2011) Dispersion of strongly confined channel plasmon polariton modes. J Opt Soc Am B 28(7):1596–1602

    Article  CAS  Google Scholar 

  20. David M, Disnan D, AIriglian E, Lardschneider A, Marschick G, Hoang H, Detz H, Lendl B, Schmid U, Strasser G, Hinkov B (2023) Advanced mid-infrared plasmonic waveguides for on-chip integrated photonics. Photonics Res 11(10):1694–1702

    Article  Google Scholar 

  21. David M, Doganlar IC, Nazzari D et al (2021) Surface protection and activation of mid-IR plasmonic waveguides for spectroscopy of liquids. J Lightwave Technol 42(2):748–759

    Article  Google Scholar 

  22. Teng D, Wang K (2021) Theoretical analysis of terahertz dielectric–loaded graphene waveguide. Nanomaterials 11(1):210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oulton RF, Sorge VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  24. Alam MZ, Aitchison JS, Mojahedi M (2014) A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev 8(3):394–408

    Article  CAS  Google Scholar 

  25. Huang CC, Chang RJ, Huang CC (2021) Nanostructured hybrid plasmonic waveguide in a slot structure for high-performance light transmission. Opt Express 29(18):29341–29356

    Article  CAS  PubMed  Google Scholar 

  26. Shi J, He X, Chen W, Li Y, Kang M, Cai Y, Xu H (2022) Remote dual-cavity enhanced second harmonic generation in a hybrid plasmonic waveguide. Nano Lett 22(2):688–694

    Article  CAS  PubMed  Google Scholar 

  27. Bu L, Liu Y, Zhang R, Teng D (2023) Finite-element method analysis of sodium based elliptical hybrid plasmonic waveguides with ultra-low loss. Plasmonics. https://doi.org/10.1007/s11468-023-02114-2

    Article  Google Scholar 

  28. Qin Y, Ma C, Huang L, Yuan Y, Sha M, Ye X, Zheng K (2023) Highly confined low-loss light transmission in linear array-enabled hybrid plasmonic waveguides. J Opt 25(6):065802

    Article  Google Scholar 

  29. Saeed M, Ghaffar A, Rehman SU, Naz MY, Shukrullah S, Naqvi QA (2022) Graphene-based plasmonic waveguides: a mini review. Plasmonics 17(3):901–911

    Article  Google Scholar 

  30. Asadi A, Jafari MR, Shahmansouri M (2022) Characteristics of a symmetric mid-infrared graphene dielectric hybrid plasmonic waveguide with ultra-deep subwavelength confinement. Plasmonics 17(4):1819–1829

    Article  CAS  Google Scholar 

  31. Teng D, Wang Y, Xu T, Wang H, Shao Q, Tang Y (2021) Symmetric graphene dielectric nanowaveguides as ultra-compact photonic structures. Nanomaterials 11(5):1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teng D, Wang Z, Huan Q, Wang H, Wang K (2022) A low loss platform for subwavelength terahertz graphene plasmon propagation. Opt Mater 128:112436

    Article  CAS  Google Scholar 

  33. Bahrami-Chenaghlou F, Habibzadeh-Sharif A, Ahmadpour A (2023) Systematic design and analysis of a compact ultralow loss graphene-based multilayer hybrid plasmonic waveguide. Photonics Nanostruct Fundam Appl 53:101088

    Article  Google Scholar 

  34. Maleki MJ, Soroosh M (2023) A low-loss subwavelength plasmonic waveguide for surface plasmon polariton transmission in optical circuits. Opt Quant Electron 55(14):1266

    Article  Google Scholar 

  35. Zheng K, Yuan Y, He J, Gu G, Zhang F, Chen Y, Song J, Qu J (2019) Ultra-high light confinement and ultra-long propagation distance design for integratable optical chips based on plasmonic technology. Nanoscale 11(10):4601–4613

    Article  CAS  PubMed  Google Scholar 

  36. He X, Liu F, Lin F et al (2021) Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt Lett 46(3):472–475

    Article  PubMed  Google Scholar 

  37. Cheng Y, Cao W, Wang G, He X, Lin F, Liu F (2023) 3D Dirac semimetal supported thermal tunable terahertz hybrid plasmonic waveguides. Opt Express 31(11):17201–17214

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Yi Y, Xu D, Yi Z, Li Z, Chen X, Jile H, Zhang J, Zeng L, Li G (2021) Terahertz tunable three band narrowband perfect absorber based on Dirac semimetal. Phys E: Low-Dimens Syst Nanostruct 131:114750

    Article  CAS  Google Scholar 

  39. Wang G, Liang Y, Leng J, He X, Lin F, Liu F (2022) 3D Dirac semimetals-dielectric elliptical fiber supported tunable terahertz hybrid waveguide. Appl Opt 61(21):6152–6157

    Article  CAS  PubMed  Google Scholar 

  40. Lu W, Wu P, Bian L, Yan J, Yi Z, Liu M, Tang B, Li G, Liu C (2024) Perfect adjustable absorber based on Dirac semi-metal high sensitivity four-band high frequency detection. Opt Laser Technol 174:110650

    Article  Google Scholar 

  41. Wang Y, Yu J, Mao YF, Chen J, Wang S, Chen HZ, Zhang Y, Wang SY, Chen X, Li T, Ma RM, Zhu S, Cai W, Zhu J (2020) Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581(7809):401–405

    Article  CAS  PubMed  Google Scholar 

  42. Teng D, Tian Y, Hu X, Guan Z, Gao W, Li P, Fang H, Yan J, Wang Z, Wang K (2022) Sodium-based cylindrical plasmonic waveguides in the near-infrared. Nanomaterials 12(12):1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rawashdeh A, Wildenborg A, Liu E, Gao Z, Czaplewski DA, Qu H, Suh JY, Yang A (2023) High-quality surface plasmon polaritons in large-area sodium nanostructures. Nano Lett 23(2):469–475

    Article  CAS  PubMed  Google Scholar 

  44. Gao Z, Wildenborg A, Kocoj CA et al (2023) Low-loss plasmonics with nanostructured potassium and sodium–potassium liquid alloys. Nano Lett 23(15):7150–7156

    Article  CAS  PubMed  Google Scholar 

  45. Teng D, Hu R, Tang Y, Wang K (2024) A sodium-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement and low cross-talk. Opt Mater 147:114729

    Article  CAS  Google Scholar 

  46. Su Y, Chang P, Lin C, Helmy AS (2019) Record Purcell factors in ultracompact hybrid plasmonic ring resonators. Sci Adv 5(8):eaav1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li T, Helmy S, Amr, Liu H, **ong Q (2023) Narrow bandwidth perfect absorber based on composite hybrid plasmonics. Opt Mater Express 13:2135–2146

    Article  Google Scholar 

  48. Li HH (1993) Refractive index of silicon and germanium and its wavelength and temperature derivatives. Phys Chem Ref Data 9:561–658

    Article  Google Scholar 

  49. Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55:1205–1208

    Article  CAS  Google Scholar 

  50. Li G, Sterke CM, De, Palomba S (2018) Fundamental limitations to the ultimate Kerr nonlinear performance of plasmonic waveguides. ACS Photonics 5(3):1034–1040

    Article  CAS  Google Scholar 

  51. Teng D, Wang K, Huan Q, Chen W, Li Z (2020) High-performance light transmission based on graphene plasmonic waveguides. J Mater Chem C 8(20):6832–6838

    Article  CAS  Google Scholar 

  52. Yang J, Cao Q, Zhou C (2010) Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters. Opt Express 18(18):18550–18557

    Article  CAS  PubMed  Google Scholar 

  53. Jeong C, Kim M, Kim S (2013) Circular hybrid plasmonic waveguide with ultra-long propagation distance. Opt Express 21(14):17404–17412

    Article  CAS  PubMed  Google Scholar 

  54. Chen D (2010) Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light. Appl Opt 49(36):6868–6871

    Article  PubMed  Google Scholar 

  55. Wang YD, Wang SL, Cai M, Liu HX (2019) A long propagation distance hybrid triangular prism waveguide for ultradeep subwavelength confinement. IEEE Sens J 19(23):11159–11166

    Article  CAS  Google Scholar 

  56. Ma Y, Farrell G, Semenova Y, Wu Q (2015) A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement. J Lightwave Technol 33(18):3827–3835

    Article  CAS  Google Scholar 

  57. Jafari MR, Asadi A, Shahmansouri M (2023) Ultra-deep subwavelength confinement palladium-based elliptical cylinder plasmonic waveguide in the near-infrared range. Plasmonics 18:1037–1045

    Article  CAS  Google Scholar 

  58. Ma Z, Kikunaga K, Wang H, Sun S, Amin R, Maiti R, Tahersima MH, Dalir H, Miscuglio M, Sorger VJ (2020) Compact graphene plasmonic slot photodetector on Silicon-on-insulator with high responsivity. ACS Photonics 7(4):932–940

    Article  CAS  Google Scholar 

  59. **ong X, Zou C-L, Ren X-F, Liu A-P, Ye Y-X, Sun F-W, Guo G-C (2013) Silver nanowires for photonics applications. Laser Photonics Rev 7(6):901–919

    Article  CAS  Google Scholar 

  60. **a Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  CAS  Google Scholar 

Download references

Funding

Natural Science Foundation of Henan (242300420667), Key Scientific Research Project of Colleges and Universities in Henan Province (24B140014), Higher Education Teaching Reform Research and Practice Project of Henan Province (2024SJGLX0524), Innovative and Experimental Project for students of Zhengzhou Normal University (DCZ2023016).

Author information

Authors and Affiliations

Authors

Contributions

Da Teng proposed the concept and supervised the research. Yongmei Tian developed methodology in the given study. Yongmei Tian and Rumeng Zhang performed the calculations and analyzed numerical data. All the authors have discussed the results thoroughly and contributed to the writing and review of the manuscript.

Corresponding author

Correspondence to Da Teng.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zhang, R. & Teng, D. Cylindrical Composite Hybrid Plasmonic Waveguides with Ultra-Strong Field Confinements: A FEM Study. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02352-y

Keywords

Navigation