Log in

Plasmonic Slot Waveguide Propagation Analysis

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic slot waveguides provide extreme light confinement with the benefits of having naturally present electrodes for switching and high thermal conductivity of the metal layers to remove excess heat. Past works relied on numerical computation for these structures, which is time-consuming and lacks physical insight. Here, we present an analytical model of plasmonic slot waveguides to determine the modal properties based on single-mode matching to continuum. The model is accurate to within 3% of rigorous numerical simulations. The theory allows for rapid design and provides physical insight into mode propagation in plasmonic slot waveguides for information processing, optical manipulation, and sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Code Availability

MATLAB code can be made available at reasonable request.

References

  1. Veronis G, Fan S (2005) Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30(24):3359–3361. https://doi.org/10.1364/OL.30.003359

    Article  PubMed  Google Scholar 

  2. Pile DF, Ogawa T, Gramotnev DK, Matsuzaki Y, Vernon KC, Yamaguchi K, Okamoto T, Haraguchi M, Fukui M (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87(26):261114. https://doi.org/10.1063/1.2149971

  3. Veronis G, Fan S (2007) Modes of subwavelength plasmonic slot waveguides. J Lightwave Technol 25(9):2511–2521. https://doi.org/10.1109/JLT.2007.903544

    Article  Google Scholar 

  4. Chen L, Shakya J, Lipson M (2006) Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt Lett 31(14):2133–2135. https://doi.org/10.1364/OL.31.002133

    Article  CAS  PubMed  Google Scholar 

  5. Ginzburg P, Arbel D, Orenstein M (2006) Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt Lett 31(22):3288–3290. https://doi.org/10.1364/OL.31.003288

    Article  PubMed  Google Scholar 

  6. Feng N-N, Dal Negro L (2007) Plasmon mode transformation in modulated-index metal-dielectric slot waveguides. Opt Lett 32(21):3086–3088. https://doi.org/10.1364/OL.32.003086

    Article  CAS  PubMed  Google Scholar 

  7. Tian J, Yu S, Yan W, Qiu M (2009) Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl Phys Lett 95(1):013504. https://doi.org/10.1063/1.3168653

  8. Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M (2016) Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica 3(9):999–1005. https://doi.org/10.1364/OPTICA.3.000999

  9. Salamin Y, Heni W, Haffner C, Fedoryshyn Y, Hoessbacher C, Bonjour R, Zahner M, Hillerkuss D, Leuchtmann P, Elder DL, Dalton LR, Hafner C, Leuthold J (2015) Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett 15(12):8342–8346. https://doi.org/10.1021/acs.nanolett.5b04025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J (2014) High-speed plasmonic phase modulators. Nature Photon 8(3):229–233. https://doi.org/10.1038/nphoton.2014.9

    Article  CAS  Google Scholar 

  11. Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder DL, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton LR, Hafner C, Leuthold J (2015) All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photon 9(8):525–528. https://doi.org/10.1038/nphoton.2015.127

  12. Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder DL, Dalton LR, Boltasseva A, Shalaev VM, Kinsey N, Leuthold J (2018) Low-loss plasmon-assisted electro-optic modulator. Nature 556(7702):483–486. https://doi.org/10.1038/s41586-018-0031-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Messner A, Jud PA, Winiger J, Eppenberger M, Chelladurai D, Heni W, Baeuerle B, Koch U, Ma P, Haffner C, Xu H, Elder DL, Dalton LR, Smajic J, Leuthold J (2021) Broadband metallic fiber-to-chip couplers and a low-complexity integrated plasmonic platform. Nano Lett 21(11):4539–4545. https://doi.org/10.1021/acs.nanolett.0c05069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li S, Zuo G, Wu N, Yang Z, Zhao B, ** or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett 14(2):547–552. https://doi.org/10.1021/nl403608a

    Article  CAS  PubMed  Google Scholar 

  15. Choo H, Kim M-K, Staffaroni M, Seok TJ, Bokor J, Cabrini S, Schuck PJ, Wu MC, Yablonovitch E (2012) Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photon 6(12):838–844. https://doi.org/10.1038/nphoton.2012.277

    Article  CAS  Google Scholar 

  16. Heydari M, Habibzadeh-Sharif A, Jabbarzadeh F (2020) Design of a compact refractive-index sensor based on surface plasmon polariton slot waveguide. Photonics Nanostruct Fundam Appl 38:100755. https://doi.org/10.1016/j.photonics.2019.100755

  17. Feng N-N, Brongersma ML, DalNegro L (2007) Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55\(\mu\)m. IEEE J Quantum Electron 43(6):479–485. https://doi.org/10.1109/JQE.2007.897913

  18. Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Express 13(17):6645–6650. https://doi.org/10.1364/OPEX.13.006645

    Article  PubMed  Google Scholar 

  19. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):294–294. https://doi.org/10.1038/lsa.2015.67

    Article  CAS  Google Scholar 

  20. Neutens P, Van Dorpe P, De Vlaminck I, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nature Photon 3(5):283–286. https://doi.org/10.1038/nphoton.2009.47

    Article  CAS  Google Scholar 

  21. Zhu S, Lo G, Kwong D (2011) Theoretical investigation of silicide schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide. Opt Express 19(17):15843–15854. https://doi.org/10.1364/OE.19.015843

    Article  CAS  PubMed  Google Scholar 

  22. Blauth M, Harms J, Prechtl M, Finley J, Kaniber M (2017) Enhanced optical activity of atomically thin MoSe2 proximal to nanoscale plasmonic slot-waveguides. 2D Mat 4(2):021011. https://doi.org/10.1088/2053-1583/aa52b0

  23. Gordon R, Dobinson M (2021) Plasmonics-mine the gap: opinion. Opt Mater Express 11(7):2192–2196. https://doi.org/10.1364/OME.430547

    Article  CAS  Google Scholar 

  24. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193. https://doi.org/10.1126/science.1114849

    Article  CAS  PubMed  Google Scholar 

  25. Han Z, Bozhevolnyi SI (2012) Radiation guiding with surface plasmon polaritons. Rep Prog Phys 76(1):016402. https://doi.org/10.1088/0034-4885/76/1/016402

  26. Salamin Y, Baeuerle B, Heni W, Abrecht FC, Josten A, Fedoryshyn Y, Haffner C, Bonjour R, Watanabe T, Burla M, Elder DL, Dalton LR, Leuthold J (2018) Microwave plasmonic mixer in a transparent fibre-wireless link. Nature Photon 12(12):749–753. https://doi.org/10.1038/s41566-018-0281-6

    Article  CAS  Google Scholar 

  27. Heni W, Fedoryshyn Y, Baeuerle B, Josten A, Hoessbacher CB, Messner A, Haffner C, Watanabe T, Salamin Y, Koch U, Elder DL, Dalton LR, Leuthold J (2019) Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun 10(1):1–8. https://doi.org/10.1038/s41467-019-09724-7

  28. Ummethala S, Harter T, Koehnle K, Li Z, Muehlbrandt S, Kutuvantavida Y, Kemal J, Marin-Palomo P, Schaefer J, Tessmann A, Garlapati SK, Bacher A, Hahn L, Walther M, Zwick T, Randel S, Freude W, Koos C (2019) Thz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photonics 13(8):519–524. https://doi.org/10.1038/s41566-019-0475-6

    Article  CAS  Google Scholar 

  29. Dionne J, Sweatlock L, Atwater H, Polman A (2006) Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73(3):035407. https://doi.org/10.1103/PhysRevB.73.035407

  30. Takakura Y (2001) Optical resonance in a narrow slit in a thick metallic screen. Phys Rev Lett 86(24):5601. https://doi.org/10.1103/PhysRevLett.86.5601

    Article  CAS  PubMed  Google Scholar 

  31. Yang F, Sambles JR (2002) Resonant transmission of microwaves through a narrow metallic slit. Phys Rev Lett 89(6):063901. https://doi.org/10.1103/PhysRevLett.89.063901

  32. Bravo-Abad J, García-Vidal F, Martín-Moreno L (2004) Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys Rev Lett 93(22):227401. https://doi.org/10.1103/PhysRevLett.93.227401

  33. Shin H, Yanik MF, Fan S, Zia R, Brongersma ML (2004) Omnidirectional resonance in a metal-dielectric-metal geometry. Appl Phys Lett 84(22):4421–4423. https://doi.org/10.1063/1.1758306

    Article  CAS  Google Scholar 

  34. Zia R, Chandran A, Brongersma ML (2005) Dielectric waveguide model for guided surface polaritons. Opt Lett 30(12):1473–1475. https://doi.org/10.1364/OL.30.001473

    Article  PubMed  Google Scholar 

  35. Garcia-Vidal F, Moreno E, Porto J, Martin-Moreno L (2005) Transmission of light through a single rectangular hole. Phys Rev Lett 95(10):103901. https://doi.org/10.1103/PhysRevLett.95.103901

  36. De Abajo FG, Gómez-Medina R, Sáenz J (2005) Full transmission through perfect-conductor subwavelength hole arrays. Phys Rev E 72(1):016608. https://doi.org/10.1103/PhysRevE.72.016608

  37. García-Vidal F, Martín-Moreno L, Moreno E, Kumar L, Gordon R (2006) Transmission of light through a single rectangular hole in a real metal. Phys Rev B 74(15):153411. https://doi.org/10.1103/PhysRevB.74.153411

  38. Gordon R (2006) Light in a subwavelength slit in a metal: propagation and reflection. Phys Rev B 73(15):153405. https://doi.org/10.1103/PhysRevB.73.153405

  39. Gordon R (2007) Angle-dependent optical transmission through a narrow slit in a thick metal film. Phys Rev B 75(19):193401. https://doi.org/10.1103/PhysRevB.75.193401

  40. Eftekhari F, Gordon R (2007) Geometric optics method for surface plasmon integrated circuits. Opt Express 15(18):11595–11600. https://doi.org/10.1364/OE.15.011595

    Article  PubMed  Google Scholar 

  41. Mary A, Rodrigo SG, Martin-Moreno L, Garcia-Vidal F (2007) Theory of light transmission through an array of rectangular holes. Phys Rev B 76(19):195414. https://doi.org/10.1103/PhysRevB.76.195414

  42. Christensen J, Martin-Moreno L, Garcia-Vidal FJ (2008) Theory of resonant acoustic transmission through subwavelength apertures. Phys Rev Lett 101(1):014301. https://doi.org/10.1103/PhysRevLett.101.014301

  43. Barnard ES, White JS, Chandran A, Brongersma ML (2008) Spectral properties of plasmonic resonator antennas. Opt Express 16(21):16529–16537. https://doi.org/10.1364/OE.16.016529

    Article  CAS  PubMed  Google Scholar 

  44. White JS, Veronis G, Yu Z, Barnard ES, Chandran A, Fan S, Brongersma ML (2009) Extraordinary optical absorption through subwavelength slits. Opt Lett 34(5):686–688. https://doi.org/10.1364/OL.34.000686

    Article  CAS  PubMed  Google Scholar 

  45. Gordon R (2009) Reflection of cylindrical surface waves. Opt Express 17(21):18621–18629

    Article  CAS  PubMed  Google Scholar 

  46. Verslegers L, Yu Z, Catrysse PB, Fan S (2010) Temporal coupled-mode theory for resonant apertures. J Opt Soc Am B 27(10):1947–1956. https://doi.org/10.1364/JOSAB.27.001947

    Article  CAS  Google Scholar 

  47. Landreman PE, Chalabi H, Park J, Brongersma ML (2016) Fabry-perot description for mie resonances of rectangular dielectric nanowire optical resonators. Opt Express 24(26):29760–29772. https://doi.org/10.1364/OE.24.029760

    Article  PubMed  Google Scholar 

  48. Bozhevolnyi SI (2006) Effective-index modeling of channel plasmon polaritons. Opt Express 14(20):9467–9476. https://doi.org/10.1364/OE.14.009467

    Article  PubMed  Google Scholar 

  49. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  50. Pati A, Gordon R (2021) Maximum power transfer in a real metal slit: an analytic approach. Opt Express 29(23):38129–38139. https://doi.org/10.1364/OE.442326

    Article  PubMed  Google Scholar 

  51. Ma G, Liang R, Wan Z, Wang S (2021) Critical angle reflection imaging for quantification of molecular interactions on glass surface. Nat Commun 12(1):1–9. https://doi.org/10.1038/s41467-021-23730-8

    Article  CAS  Google Scholar 

  52. Smalley JS, Vallini F, Gu Q, Fainman Y (2016) Amplification and lasing of plasmonic modes. Proc IEEE 104(12):2323–2337. https://doi.org/10.1109/JPROC.2016.2582078

    Article  CAS  Google Scholar 

  53. Ciracì C, Vidal-Codina F, Yoo D, Peraire J, Oh S-H, Smith DR (2020) Impact of surface roughness in nanogap plasmonic systems. ACS Photonics 7(4):908–913. https://doi.org/10.1021/acsphotonics.0c00099

    Article  CAS  Google Scholar 

  54. Treebupachatsakul T, Shinnakerdchoke S, Pechprasarn S (2021) Analysis of effects of surface roughness on sensing performance of surface plasmon resonance detection for refractive index sensing application. Sensors 21(18):6164. https://doi.org/10.3390/s21186164

    Article  PubMed  PubMed Central  Google Scholar 

  55. Min Q, Gordon R (2009) Squeezing light into subwavelength metallic tapers: single mode matching method. J Nanophoton 3(1):033505. https://doi.org/10.1117/1.3204944

Download references

Funding

Natural Sciences and Engineering Research Council of Canada (CREATE in Quantum Computing Program, Grant Number 543245 and RGPIN-2017-03830).

Author information

Authors and Affiliations

Authors

Contributions

AP derived the equations, performed the simulations, and wrote the manuscript. RG formulated the theory and wrote the manuscript.

Corresponding author

Correspondence to Reuven Gordon.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, A., Gordon, R. Plasmonic Slot Waveguide Propagation Analysis. Plasmonics 18, 551–560 (2023). https://doi.org/10.1007/s11468-023-01786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01786-0

Keywords

Navigation