Log in

Graphene-Based Plasmonic Waveguides: a Mini Review

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene plasmonics is one of the most explored fields since the successful experimental discovery of the graphene due to its unprecedented properties. The dynamical modulation and active control over electromagnetic waves due to the tuning of the graphene conductivity have made the graphene-based waveguides a fascinating field for the designing of various high-performance optoelectronic devices such as modulators, polarizers, photo detectors, sensors, and resonators. In this paper, a historical review of graphene-based waveguides is presented. The graphene waveguides can be divided in various categories depending upon various parameters such as geometry, number of graphene layers, and nature of partnering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Detail about data has been provided in the article.

References

  1. Gao X, Cui TJ (2015) Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications. Nanotechnol Rev 4:239–258

    Google Scholar 

  2. Schuler S, Schall D, Neumaier D, Dobusch L, Bethge O, Schwarz B et al (2016) Controlled generation of ap–n junction in a waveguide integrated graphene photodetector. Nano Lett 16:7107–7112

    Article  CAS  Google Scholar 

  3. Sorger VJ, Oulton RF, Ma R-M, Zhang X (2012) Toward integrated plasmonic circuits. MRS bull 37:728–738

    Article  CAS  Google Scholar 

  4. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2010) Biosensing with plasmonic nanosensors, in Nanoscience and technology: a collection of reviews from nature journals, ed: World Scientific pp. 308–319

  5. Maier SA (2007) Plasmonics: fundamentals and applications: Springer Science & Business Media

  6. Chen M, Sheng P, Sun W, Cai J (2016) A symmetric terahertz graphene-based hybrid plasmonic waveguide. Optics Communications 376:41–46

    Article  CAS  Google Scholar 

  7. Han Z, Bozhevolnyi S (2012) Waveguiding with surface plasmon polaritons, Reports on progress in physics. Physical Society (Great Britain) 76:016402

  8. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

  9. Teng D, Wang K, Li Z (2020) Graphene-coated nanowire waveguides and their applications. Nanomaterials 10:229

    Article  CAS  Google Scholar 

  10. Kovacevic G, Yamashita S (2016) Waveguide design parameters impact on absorption in graphene coated silicon photonic integrated circuits. Opt Express 24:3584–3591

    Article  CAS  Google Scholar 

  11. Shiue R-J, Gao Y, Wang Y, Peng C, Robertson AD, Efetov DK et al (2015) High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett 15:7288–7293

    Article  CAS  Google Scholar 

  12. Ooi KJ, Leong PC, Ang LK, Tan DT (2017) All-optical control on a graphene-on-silicon waveguide modulator. Sci Rep 7:1–9

    Article  Google Scholar 

  13. Nemilentsau A, Low T, Hanson G (2016) Anisotropic 2D materials for tunable hyperbolic plasmonics, Phys Rev Lett 116:066804

  14. Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P et al (2017) Polaritons in layered two-dimensional materials. Nat Mater 16:182–194

    Article  CAS  Google Scholar 

  15. Geim AK (2011) Nobel lecture: random walk to graphene, Rev Mod Phys 83:851–862

  16. Biro L, Nemes-Incze P, Lambin P (2011) Graphene: nanoscale processing and recent applications Nanoscale 4:1824–39

  17. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  18. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T et al (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude dam** limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  19. Kimura K, Shoji K, Yamamoto Y, Norimatsu W, Kusunoki M (2013) High-quality graphene on SiC (000 1¯) formed through an epitaxial TiC layer. Phys Rev B 87:075431

  20. Gusynin V, Sharapov S, Carbotte J (2006) Magneto-optical conductivity in graphene. J Phys Condens Matter 19:026222

  21. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302

  22. Xu C, ** Y, Yang L, Yang J, Jiang X (2012) Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt Express 20:22398–22405

    Article  CAS  Google Scholar 

  23. Lovat G (2012) Transverse-resonance analysis of dominant-mode propagation in graphene nano-waveguides. in International Symposium on Electromagnetic Compatibility-EMC EUROPE 1–5

  24. Lovat G, Burghignoli P, Araneo R (2012) Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides. IEEE Trans Electromagn Compat 55:328–333

    Google Scholar 

  25. Gómez-Díaz JS, Esquius-Morote M, Perruisseau-Carrier J (2013) Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. Opt Express 21:24856–24872

  26. Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:084314

  27. Hwang E, Sarma SD (2009) Plasmon modes of spatially separated double-layer graphene. Phys Rev B 80:205405

  28. Lin I-T, Liu J-M (2014) Optimization of double-layer graphene plasmonic waveguides. Appl Phys Lett 105:061116

  29. Ke S, Wang B, Qin C, Long H, Wang K, Lu P (2016) Exceptional points and asymmetric mode switching in plasmonic waveguides. J Lightwave Technol 34:5258–5262

    Article  CAS  Google Scholar 

  30. Doust SK, Siahpoush V, Asgari A (2017) The tunability of surface plasmon polaritons in graphene waveguide structures. Plasmonics 12:1633–1639

    Article  Google Scholar 

  31. Abramov A, Evseev D, Sementsov D (2019) Surface plasmon polaritons in a graphene–semiconductor–graphene thin film. Phys Solid State 61:1502–1508

    Article  CAS  Google Scholar 

  32. Zhu B, Ren G, Zheng S, Lin Z, Jian S (2013) Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt Express 21:17089–17096

  33. Smirnova D, Iorsh I, Shadrivov I, Kivshar YS (2014) Multilayer graphene waveguides. JETP Lett 99:456–460

    Article  CAS  Google Scholar 

  34. El-Khozondar HJ, El-Khozondar RJ, Shabat MM (2017) Dispersion characteristics of graphene surface plasmon four layers waveguide. IUG Journal of Natural Studies

  35. Gric T, Hess O (2017) Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt Express 25:11466–11476

    Article  CAS  Google Scholar 

  36. Yaqoob M, Ghaffar A, Alkanhal MA, Aladadi YT (2019) Analysis of hybrid surface wave propagation supported by chiral metamaterial–graphene–metamaterial structures, Results in Physics 14:102378

  37. Bliokh YP, Freilikher V, Nori F (2010) Tunable electronic transport and unidirectional quantum wires in graphene subjected to electric and magnetic fields Phys Rev B 81:075410

  38. Yuan Y, Yao J, Xu W (2012) Terahertz photonic states in semiconductor–graphene cylinder structures. Opt Lett 37:960–962

    Article  CAS  Google Scholar 

  39. Correas-Serrano D, Gomez-Diaz J, Alvarez-Melcon A (2014) Surface plasmons in graphene cylindrical waveguides, in. IEEE Antennas and Propagation Society International Symposium (APSURSI) 2014:896–897

    Article  Google Scholar 

  40. Zhao J, Liu X, Qiu W, Ma Y, Huang Y, Wang J-X et al (2014) Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity. Opt Express 22:5754–5761

    Article  Google Scholar 

  41. Gao Y, Ren G, Zhu B, Wang J, Jian S (2014) Single-mode graphene-coated nanowire plasmonic waveguide. Opt Lett 39:5909–5912

  42. Qian H, Ma Y, Yang Q, Chen B, Liu Y, Guo X et al (2014) Electrical tuning of surface plasmon polariton propagation in graphene–nanowire hybrid structure. ACS Nano 8:2584–2589

    Article  CAS  Google Scholar 

  43. Gao Y, Ren G, Zhu B, Liu H, Lian Y, Jian S (2014) Analytical model for plasmon modes in graphene-coated nanowire. Opt Express 22:24322–24331

    Article  CAS  Google Scholar 

  44. Liu J-P, Zhai X, Wang L-L, Li H-J, **e F, Lin Q et al (2016) Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide. Plasmonics 11:703–711

    Article  CAS  Google Scholar 

  45. Kuzmin DA, Bychkov IV, Shavrov VG, Kotov LN (2016) Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies. Sci Rep 6:26915

    Article  CAS  Google Scholar 

  46. Teng D, Yang Y, Guo J, Ma W, Tan Y, Wang K (2020) Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides. Results in Physics 103169

  47. Correas-Serrano D, Gomez-Diaz JS, Alù A, Melcón AÁ (2015) Electrically and magnetically biased graphene-based cylindrical waveguides: analysis and applications as reconfigurable antennas. IEEE Transactions on Terahertz Science and Technology 5:951–960

    Article  CAS  Google Scholar 

  48. Liu J-P, Zhai X, **e F, Wang L-L, **a S-X, Li H-J et al (2016) Analytical model of mid-infrared surface plasmon modes in a cylindrical long-range waveguide with double-layer graphene. J Lightwave Technol 35:1971–1979

    Article  Google Scholar 

  49. Zhao T, Hu M, Zhong R, Chen X, Zhang P, Gong S et al (2016) Plasmon modes of circular cylindrical double-layer graphene. Opt Express 24:20461–20471

    Article  CAS  Google Scholar 

  50. Hajati M, Hajati Y (2016) High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate. JOSA B 33:2560–2565

    Article  CAS  Google Scholar 

  51. Hajati M, Hajati Y (2017) Plasmonic characteristics of two vertically coupled graphene-coated nanowires integrated with substrate. Appl Opt 56:870–875

    Article  CAS  Google Scholar 

  52. Zhang S, He S, Li K, Lu X, Xu J, Liang Z (2019) Compact confinement of radially polarized light in graphene cylindrical hybrid plasmonic waveguide. in Optoelectronic Devices and Integration VIII 111840X

  53. Teng D, Wang K, Huan Q, Chen W, Li Z (2020) High-performance light transmission based on graphene plasmonic waveguides. J Mat Chem C

  54. Li H-J, Wang L-L, Huang Z-R, Sun B, Zhai X, Li X-F (2013) Simulations of multi-functional optical devices based on a sharp 90 bending graphene parallel pair. J Opt 16:015004

  55. Lu WB, Zhu W, Xu HJ, Ni ZH, Dong ZG, Cui TJ (2013) Flexible transformation plasmonics using graphene. Opt Express 21:10475–10482

    Article  CAS  Google Scholar 

  56. **ao T-H, Gan L, Li Z-Y (2015) Graphene surface plasmon polaritons transport on curved substrates. Photonics Research 3:300–307

    Article  CAS  Google Scholar 

  57. Zhu B, Ren G, Yang Y, Gao Y, Wu B, Lian Y et al (2015) Field enhancement and gradient force in the graphene-coated nanowire pairs. Plasmonics 10:839–845

    Article  CAS  Google Scholar 

  58. **a S-X, Zhai X, Wang L-L, Liu J-P, Li H-J, Liu J-Q et al (2016) Excitation of surface plasmons in graphene-coated nanowire arrays. J Appl Phys 120:103104

  59. Kou Y, Förstner J (2016) Discrete plasmonic solitons in graphene-coated nanowire arrays. Opt Express 24:4714–4721

    Article  CAS  Google Scholar 

  60. Teng D, Wang K, Huan Q, Zhao Y, Tang Y (2019) High-performance transmission of surface plasmons in graphene-covered nanowire pairs with substrate. Nanomaterials 9:1594

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Higher Education Commission (HEC) under NRPU for under Project No. 8576.

Author information

Authors and Affiliations

Authors

Contributions

Mariam Saeed, Sajjad ur Rehman, Y. Naz, and S.Shukrullah reviewed the literature and wrote the main manuscript text. A. Ghaffar and Q. A. Naqvi thoroughly analyzed the literature and finalized the article.

Corresponding author

Correspondence to Abdul Ghaffar.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, M., Ghaffar, A., Rehman, S.u. et al. Graphene-Based Plasmonic Waveguides: a Mini Review. Plasmonics 17, 901–911 (2022). https://doi.org/10.1007/s11468-021-01585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01585-5

Keywords

Navigation