Log in

An Efficient DCT-II Based Harmonic Wavelet Transform for Time-Frequency Analysis

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

DFT-based complex harmonic wavelet (CHW) is being used to directly compute frequency content with respect to time by employing discrete Fourier transform and inverse discrete Fourier transform. However, DFT coefficients suffer severe leakage of energy from one band to another band of frequency. To minimize the leakage between bands, a new basis function for harmonic wavelet transform using discrete cosine transform (DCTHWT) is proposed, which leads to a better representation of the time-frequency spectrum. The proposed DCTHWT bases are formulated by multiplying DCT-II matrix with a block diagonal matrix in which blocks are phase multiplied DCT-II matrices. The time-frequency analysis using the proposed DCTHWT is studied for different non-stationary input signals, and observed that leakages are minimized compared to the spectrogram, computed using DFT-based CHW. In addition to the aforesaid advantage, the proposed wavelet transform has features like admissibility, orthogonality, multiresolution and band-limited nature in the frequency domain. Further, the computational complexity of the proposed DCT-based harmonic wavelet transform is studied and observed that it has asymptotic gain of \(50 \%\) compared to CHW and \(33 \%\) compared to the modified CHW. Hence, the proposed DCT-based HWT is efficient in terms of computational complexity and have better time-frequency representation compared to DFT-based complex harmonic wavelet transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

Code Availability

Not applicable.

References

  1. Luo, Y., & Wang, Y. (2020). A statistical time-frequency model for non-stationary time series analysis. IEEE Transactions on Signal Processing, 68, 4757–4772.

    Article  MathSciNet  MATH  Google Scholar 

  2. Pagana, G., Galleani, L., Gross, S., Roch, M. R., Pastore, E., Poggio, M., & Quaranta, G. (2012). Time-frequency analysis of the endocavitarian signal in paroxysmal atrial fibrillation. IEEE Transactions on Biomedical Engineering, 59, 2838–2844.

    Article  Google Scholar 

  3. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 8.

    Article  Google Scholar 

  4. Cho, S. -H., Jang, G., & Kwon, S. -H. (2010). Time-frequency analysis of power-quality disturbances via the Gabor-Wigner transform. IEEE Transactions on Power Delivery, 25, 494–499.

    Article  Google Scholar 

  5. Lin, Y. -H., & Tsai, M. -S. (2013). Development of an improved time-frequency analysis-based nonintrusive load monitor for load demand identification. IEEE Transactions on Instrumentation and Measurement, 63, 1470–1483.

    Article  Google Scholar 

  6. Leonowicz, Z., Lobos, T., & Sikorski, T. (2007). Time-frequency analysis of complex space phasor in power electronics. IEEE Transactions on Instrumentation and Measurement, 56, 2395–2403.

    Article  Google Scholar 

  7. Li, Z., Gao, J., Wang, Z., Liu, N., & Yang, Y. (2020). Time-synchroextracting general chirplet transform for seismic time-frequency analysis. IEEE Transactions on Geoscience and Remote Sensing, 58, 8626–8636.

    Article  Google Scholar 

  8. Liu, N., Gao, J., Zhang, B., Li, F., & Wang, Q. (2017). Time-frequency analysis of seismic data using a three parameters s transform. IEEE Geoscience and Remote Sensing Letters, 15, 142–146.

    Article  Google Scholar 

  9. Liu, W., Cao, S., & Chen, Y. (2016). Seismic time-frequency analysis via empirical wavelet transform. IEEE Geoscience and Remote Sensing Letters, 13, 28–32.

    Article  Google Scholar 

  10. Guo, K. -Y., Qu, Q. -Y., Feng, A. -X., & Sheng, X. -Q. (2016). Miss distance estimation based on scattering center model using time-frequency analysis. IEEE Antennas and Wireless Propagation Letters, 15, 1012–1015.

    Article  Google Scholar 

  11. Zhang, Y., Amin, M., & Ahmad, F. (2008). Time-frequency analysis for the localization of multiple moving targets using dual-frequency radars. IEEE Signal Processing Letters, 15, 777–780.

    Article  Google Scholar 

  12. Li, Z., & Crocker, M. J. (2006). A study of joint time-frequency analysis-based modal analysis. IEEE Transactions on Instrumentation and Measurement, 55, 2335–2342.

    Article  Google Scholar 

  13. Gabor, D. (1946). Theory of communication. Part 1: the analysis of information. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 93, 429–441.

    Google Scholar 

  14. Dremin, I. M., Ivanov, O. V., & Nechitailo, V. A. (2001). Wavelets and their uses. Physics-Uspekhi, 44, 447.

    Article  Google Scholar 

  15. Newland, D. E. (1993). Harmonic wavelet analysis. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 443, 203–225.

    MATH  Google Scholar 

  16. Khatua, P., & Ray, K. C. (2022). A low computational complexity modified complex harmonic wavelet transform. Circuits, Systems, and Signal Processing, 1–22.

  17. Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66, 51–83.

    Article  Google Scholar 

  18. Schuster, S., Scheiblhofer, S., & Stelzer, A. (2009). The influence of windowing on bias and variance of DFT-based frequency and phase estimation. IEEE Transactions on Instrumentation and Measurement, 58, 1975–1990.

    Article  Google Scholar 

  19. Narasimhan, S., Harish, M., Haripriya, A., & Basumallick, N. (2009). Discrete cosine harmonic wavelet transform and its application to signal compression and subband spectral estimation using modified group delay. Signal, Image and Video Processing, 3, 85–99.

    Article  MATH  Google Scholar 

  20. Narasimha, M., & Peterson, A. (1978). On the computation of the discrete cosine transform. IEEE Transactions on Communications, 26, 934–936.

    Article  MATH  Google Scholar 

  21. Kim, S., Yu, H., Lee, J., & Hong, D. (2009). Low bias frequency domain SNR estimator using DCT in mobile fading channels. IEEE Transactions on Wireless Communications, 8, 45–50.

    Article  Google Scholar 

  22. Jiang, J., & Feng, G. (2002). The spatial relationship of DCT coefficients between a block and its sub-blocks. IEEE Transactions on Signal Processing, 50, 1160–1169.

    Article  Google Scholar 

  23. Sang, Y. -F. (2012). A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resources Management, 26, 3345–3365.

    Article  Google Scholar 

  24. Yang, M., Sang, Y. -F., Liu, C., & Wang, Z. (2016). Discussion on the choice of decomposition level for wavelet based hydrological time series modeling. Water, 8, 197.

    Article  Google Scholar 

  25. Walter, G. G., & Zhang, J. (1998). Orthonormal wavelets with simple closed-form expressions. IEEE Transactions on Signal Processing, 46, 2248–2251.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zayed, A. I., & Walter, G. G. (2001). Wavelets in closed forms. In Wavelet Transforms and Time-Frequency Signal Analysis (pp. 121–143). Springer.

  27. Shao, X., & Johnson, S. G. (2008). Type-II/III DCT/DST algorithms with reduced number of arithmetic operations. Signal Processing, 88, 1553–1564.

    Article  MATH  Google Scholar 

  28. Chen, W. -H., Smith, C., & Fralick, S. (1977). A fast computational algorithm for the discrete cosine transform. IEEE Transactions on Communications, 25, 1004–1009.

    Article  MATH  Google Scholar 

  29. Kaplun, D., Voznesenskiy, A., Romanov, S., Nepomuceno, E., & Butusov, D. (2019). Optimal estimation of wavelet decomposition level for a matching pursuit algorithm. Entropy, 21, 843.

    Article  MathSciNet  Google Scholar 

  30. Tsui, P. P., & Basir, O. A. (2006). Wavelet basis selection and feature extraction for shift invariant ultrasound foreign body classification. Ultrasonics, 45, 1–14.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Deity, GOI for partially using the utilities provided under \(SMDP-C2SD\), Electrical Engineering Department \((R \& D/SP/EE/SMD/2015-16/126)\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash Chandra Ray.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Derivation of the Proposed DCTHWT Basis Function

The proposed DCTHWT equation in (15) is derived for \(i_o >0\) in (13). Equation (13) is expressed excluding the constant term as

$$\begin{aligned} \begin{aligned} \psi _{[i_o, \tau ]}^{\prime }(n)&= \sum _{k=N_v}^{2N_v-1}\limits \cos \left( \frac{\pi (2n+1)k}{2N}\right) \cos \left( \frac{\pi (2k+1)\tau }{2N_v}\right) \\ {}&= \sum _{i_v=0}^{N_v-1}\limits \cos \left( \frac{\pi (2n+1)(N_v+i_v)}{2N}\right) \cos \left( \frac{\pi (2(N_v+i_v)+1)\tau }{2N_v}\right) \\ {}&= \sum _{i_v=0}^{N_v-1}\limits \cos \left( \frac{\pi (2n+1)(N_v+i_v)}{2N}\right) \cos \left( \pi \tau +\frac{\pi (2i_v+1)\tau }{2N_v}\right) \\ {}&= (-1)^{\tau }\sum _{i_v=0}^{N_v-1}\limits \cos \left( \frac{\pi (2n+1)(N_v+i_v)}{2N}\right) \cos \left( \frac{\pi (2i_v+1)\tau }{2N_v}\right) \\ {}&=\frac{(-1)^{\tau }}{2}\sum _{i_v=0}^{N_v-1}\limits \left( \cos (A+B) + \cos (A-B) \right) , \end{aligned} \end{aligned}$$
(26)
$$\begin{aligned} \text {where} \quad A=\frac{\pi (2n+1)(N_v+i_v)}{2N}, B=\frac{\pi (2i_v+1)\tau }{2N_v} . \end{aligned}$$

The first term in (26) is termed as \(T_1\) and expressed as

$$\begin{aligned} \begin{aligned} T_1&=\sum _{i_v=0}^{N_v-1}\limits \cos (A+B)\\ {}&= \sum _{i_v=0}^{N_v-1}\limits \cos \left( \frac{\pi (2n+1)(N_v+i_v)}{2N} + \frac{\pi (2i_v+1)\tau }{2N_v}\right) \\ {}&= \sum _{i_v=0}^{N_v-1}\limits \cos \left( \frac{\pi N_v(2n+1)(N_v+i_v)+ \pi N(2i_v+1)\tau }{2NN_v}\right) \\ {}&= \sum _{i_v=0}^{N_v-1}\limits \cos \left( \alpha _1 + \beta _1 i_v\right) , \end{aligned} \end{aligned}$$
(27)
$$\begin{aligned} \text {where} \;\, \alpha _1= \frac{\pi N_v^{2}(2n+1)+\pi \tau N}{2NN_v}, \beta _1=\frac{\pi N_v(2n+1)+2 \pi \tau N}{2NN_v} . \end{aligned}$$

With the help of trigonometric identity, (27) is defined as

$$\begin{aligned} \begin{aligned} T_1&= \sum _{i_v=0}^{N_v-1}\limits \cos \left( \alpha + \beta i_v\right) \\ {}&= {\left\{ \begin{array}{ll} \cos \left( \alpha +(N_v-1)\frac{\beta }{2} \right) \frac{\sin \left( \frac{N_v\beta }{2}\right) }{\sin \left( \frac{\beta }{2}\right) } &{} \text {if}\;(\beta \ne 0)\\ N_v \cos (\alpha ) &{} \text {if}\;( \beta = 0) \end{array}\right. } \end{aligned} \end{aligned}$$
(28)

Equation (27) is derived with the help of (28) as

$$\begin{aligned} \begin{aligned} \sum _{i_v=0}^{N_v-1}\limits \cos (A+B)&= \cos \left( \alpha _1+(N_v-1)\frac{\beta _1}{2} \right) \frac{\sin \left( \frac{N_v\beta _1}{2}\right) }{\sin \left( \frac{\beta _1}{2}\right) }\\ {}&= \cos \left( C+\pi \tau \right) \frac{\sin \left( D+\pi \tau \right) }{\sin \left( \frac{(\pi \tau +D)}{N_v}\right) }\\ {}&=\frac{\cos (C)\sin (D)}{\sin \left( \frac{(\pi \tau +D)}{N_v}\right) } \end{aligned} \end{aligned}$$
(29)
$$\begin{aligned} \text {where} \;\, C=\frac{ \pi (2n+1)(3N_v-1)}{4N}+ \frac{\tau \pi }{2}, D=\frac{\pi (2n+1)N_v}{4N}-\frac{\pi \tau }{2} \end{aligned}$$

Similar to (29), the second term in (26) is obtained as

$$\begin{aligned} \sum _{i_v=0}^{N_v-1}\limits \cos (A- B)= \frac{\cos (C) \sin (D)}{\sin \left( \frac{D}{N_v}\right) } \end{aligned}$$
(30)

Combining the value of (29) and (30), \(\psi '_{[i_o, \tau ]}(n)\) in (26) is obtained as

$$\begin{aligned} \begin{aligned} \psi _{[i_o, \tau ]}^{\prime }(n)&= \frac{(-1)^{\tau }}{2}\sum _{i_v=0}^{N_v-1}\limits \left[ \cos (A+B) + \cos (A-B)\right] \\ {}&= \frac{(-1)^{\tau }}{2}\left( \frac{\cos (C)\sin (D)}{\sin \left( \frac{(\pi \tau +D)}{N_v}\right) }+ \frac{\cos (C)\sin (D)}{\sin \left( \frac{D}{N_v}\right) }\right) \end{aligned} \end{aligned}$$
(31)

1.2 B. Derivation of \(\sum _{m=1}^{n-2}\limits m 2^{m}\)

The term \(\sum _{m=1}^{n-2}\limits m 2^{m}\) is computed as

$$\begin{aligned} \begin{aligned} S&=\sum _{m=1}^{n-2} m 2^{m}\\ {}&=\left( 1\times 2 + 2\times 2^2 +3 \times 2^3 +4\times 2^4+\cdots +(n-2).2^{n-2}\right) \\{}& \begin{aligned}=\;&(2 +2^2+2^3+\cdots +2^{n-2})+(2^2+2^3+\cdots +2^{n-2})+\\&\cdots (2^k+2^{k+1}+\cdots +2^{n-2})+\cdots (2^{n-3}+2^{n-2})+2^{n-2}\end{aligned}\\ {}&\begin{aligned}=\;&2(2^{n-2}-1)+2^2(2^{n-3}-1)+\cdots +2^k(2^{n-k-1}-1)\\ {}&\cdots +2^{n-3}(2^2-1)+2^{n-2}(2-1)\end{aligned}\\ {}&=(n-1)2^{n-1}-(2 +2^2+2^3+\cdots +2^{n-2})\\ {}&=(n-1)2^{n-1}- 2(2^{n-2}-1)\\ {}&= n2^{n-1}- 2^{n}-2 \end{aligned} \end{aligned}$$
(32)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatua, P., Ray, K.C. An Efficient DCT-II Based Harmonic Wavelet Transform for Time-Frequency Analysis. J Sign Process Syst 94, 1381–1394 (2022). https://doi.org/10.1007/s11265-022-01805-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-022-01805-z

Keywords

Navigation