Log in

A Low Computational Complexity Modified Complex Harmonic Wavelet Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Complex harmonic wavelet (CHW) is a time–frequency tool that directly computes the frequency content rather than scales with respect to time. The complex harmonic wavelet for discrete signal computes N coefficients for N input samples, with the computational complexity of \(O(N\log _2 N)\) by employing the FFT algorithm. However, this wavelet function for discrete signal is not conjugate symmetric for positive and negative half-planes. Therefore, this paper proposes a new basis function termed modified complex harmonic wavelet transform by multiplying a phase term with CHW. The novelty of this phase multiplication leads the modified CHW to complex conjugate that reduces its computational complexity compared to existing CHW, attaining a computational gain up to \(25 \%\) asymptotically for larger sample points. Like CHW, this proposed modified CHW retains the properties of orthogonality and compact support in the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data

Not applicable.

Code availability

Not applicable.

References

  1. L. Arts, E. van den Broek et al., The fast continuous wavelet transformation (FCWT) for real-time, high-quality, noise-resistant time–frequency analysis. Nat. Comput. Sci. 1–12 (2022)

  2. R. Brown, M. Lauzon, R. Frayne, A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous s-transform spectrum nonredundantly. IEEE Trans. Signal Process. 58(1), 281–290 (2010). https://doi.org/10.1109/TSP.2009.2028972

    Article  MathSciNet  MATH  Google Scholar 

  3. S.H. Cho, G. Jang, S.H. Kwon, Time-frequency analysis of power-quality disturbances via the Gabor–Wigner transform. IEEE Trans. Power Deliv. 25(1), 494–499 (2010)

    Article  Google Scholar 

  4. C.K. Chui, Wavelets Mathematical Tool for Signal Analysis (SIAM, Philadelphia, 1997)

    Book  Google Scholar 

  5. I. Daubechies, Where do wavelets come from? A personal point of view. Proc. IEEE 84(4), 510–513 (1996). https://doi.org/10.1109/5.488696

    Article  Google Scholar 

  6. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo, Wavelets and their uses. Phys. Usp. 44(5), 447 (2001)

    Article  Google Scholar 

  7. D. Gabor, Theory of communication. Part 1: the analysis of information. Electrical engineers—Part III: radio and communication engineering. J. Inst. 93(26), 429–441 (1946). https://doi.org/10.1049/ji-3-2.1946.0074

    Article  Google Scholar 

  8. K.Y. Guo, Q.Y. Qu, A.X. Feng, X.Q. Sheng, Miss distance estimation based on scattering center model using time-frequency analysis. IEEE Antennas Wirel. Propag. Lett. 15, 1012–1015 (2016)

    Article  Google Scholar 

  9. D. Kaplun, A. Voznesenskiy, S. Romanov, E. Nepomuceno, D. Butusov, Optimal estimation of wavelet decomposition level for a matching pursuit algorithm. Entropy 21(9), 843 (2019)

    Article  MathSciNet  Google Scholar 

  10. Z. Leonowicz, T. Lobos, T. Sikorski, Time-frequency analysis of complex space phasor in power electronics. IEEE Trans. Instrum. Meas. 56(6), 2395–2403 (2007)

    Article  Google Scholar 

  11. Z. Li, M.J. Crocker, A study of joint time-frequency analysis-based modal analysis. IEEE Trans. Instrum. Meas. 55(6), 2335–2342 (2006)

    Article  Google Scholar 

  12. Y.H. Lin, M.S. Tsai, Development of an improved time-frequency analysis-based nonintrusive load monitor for load demand identification. IEEE Trans. Instrum. Meas. 63(6), 1470–1483 (2013)

    Article  Google Scholar 

  13. W. Liu, S. Cao, Y. Chen, Seismic time-frequency analysis via empirical wavelet transform. IEEE Geosci. Remote Sens. Lett. 13(1), 28–32 (2016)

    Article  Google Scholar 

  14. S. Mallat, W.L. Hwang, Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)

    Article  MathSciNet  Google Scholar 

  15. D.E. Newland, Harmonic wavelet analysis. Proc. R. Soc. Lond. A 443(1917), 203–225 (1993)

    Article  Google Scholar 

  16. D.E. Newland, Application of harmonic wavelets to time-frequency map**. In Fifth International Congress on Sound and Vibration, pp. 2043–2053 (1997)

  17. T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, 1996)

    MATH  Google Scholar 

  18. R.S. Orr, The order of computation for finite discrete Gabor transforms. IEEE Trans. Signal Process. 41(1), 122 (1993)

    Article  Google Scholar 

  19. G. Pagana, L. Galleani, S. Gross, M.R. Roch, E. Pastore, M. Poggio, G. Quaranta, Time-frequency analysis of the endocavitarian signal in paroxysmal atrial fibrillation. IEEE Trans. Biomed. Eng. 59(10), 2838–2844 (2012)

    Article  Google Scholar 

  20. W.J. Staszewski, A.N. Robertson, Time-frequency and time-scale analyses for structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1851), 449–477 (2007)

    Article  MathSciNet  Google Scholar 

  21. R. Stockwell, L. Mansinha, R. Lowe, Localization of the complex spectrum: the s transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996). https://doi.org/10.1109/78.492555

    Article  Google Scholar 

  22. F. Tadel, S. Baillet, J.C. Mosher, D. Pantazis, R.M. Leahy, Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 8 (2011)

    Article  Google Scholar 

  23. Y. Yang, Z. Peng, X. Dong, W. Zhang, G. Meng, Application of parameterized time-frequency analysis on multicomponent frequency modulated signals. IEEE Trans. Instrum. Meas. 63(12), 3169–3180 (2014)

    Article  Google Scholar 

  24. H. Zhengyou, G. Shibin, C. **aoqin, Z. Jun, B. Zhiqian, Q. Qingquan, Study of a new method for power system transients classification based on wavelet entropy and neural network. Int. J. Electr. Power Energy Syst. 33(3), 402–410 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Deity, GOI, for partially using the utilities provided under SMDP-C2SD, Electrical Engineering Department (R &D/SP/EE/SMD/2015-16/126).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritiranjan Khatua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatua, P., Ray, K.C. A Low Computational Complexity Modified Complex Harmonic Wavelet Transform. Circuits Syst Signal Process 41, 6462–6483 (2022). https://doi.org/10.1007/s00034-022-02095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02095-3

Keywords

Navigation