Log in

Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bear, J.: Dynamics of Fluids in Porous Media, vol. 1. American Elsevier Publishing Company (1972)

  • Bechtold, M., Haber-Pohlmeier, S., Vanderborght, J., Pohlmeier, A., Ferré, T.P.A., Vereecken, H.: Near-surface solute redistribution during evaporation. Geophys. Res. Lett. (2011). https://doi.org/10.1029/2011gl048147

    Google Scholar 

  • Bergstad, M., Or, D., Withers, P.J., Shokri, N.: The influence of NaCl concentration on salt precipitation in heterogeneous porous media. Water Resour. Res. 53(2), 1702–1712 (2017). https://doi.org/10.1002/2016WR020060

    Article  Google Scholar 

  • Brutsaert, W.: Hydrology: An Introduction. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989)

    Book  Google Scholar 

  • Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120–121, 1–17 (2011). https://doi.org/10.1016/j.jconhyd.2010.05.002

    Article  Google Scholar 

  • Desarnaud, J., Derluyn, H., Molari, L., Miranda, S.D., Cnudde, V., Shahidzadeh, N.: Drying of salt contaminated porous media: effect of primary and secondary nucleation. J. Appl. Phys. 118(11), 114901 (2015). https://doi.org/10.1063/1.4930292

    Article  Google Scholar 

  • Diouf, B., Geoffroy, S., Abou-Chakra Guéry, A., Prat, M.: Locus of first crystals on the evaporative surface of a vertically textured porous medium. Eur. Phys. J. Appl. Phys. 81(1), 11102 (2018)

    Article  Google Scholar 

  • Fried, J.J., Combarnous, M.A.: Dispersion in porous media. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 7, pp. 169–282. Elsevier, Amsterdam (1971)

    Google Scholar 

  • Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  • Guglielmini, L., Gontcharov, A., Aldykiewicz Jr., A.J., Stone, H.A.: Drying of salt solutions in porous materials: Intermediate-time dynamics and efflorescence. Phys. Fluids 20(7), 077101 (2008). https://doi.org/10.1063/1.2954037

    Article  Google Scholar 

  • Hidri, F.: Evaporation from a porous medium containing a dissolved salt. Influence of heterogeneities at Darcy’s scale on the distribution of ions at the evaporative surface. Ph.D. Thesis (2013)

  • Hidri, F., Sghaier, N., Eloukabi, H., Prat, M., Nasrallah, S.B.: Porous medium coffee ring effect and other factors affecting the first crystallisation time of sodium chloride at the surface of a drying porous medium. Phys. Fluids 25(12), 127101 (2013). https://doi.org/10.1063/1.4834356

    Article  Google Scholar 

  • Huinink, H.P., Pel, L., Michels, M.A.J.: How ions distribute in a drying porous medium: a simple model. Phys. Fluids 14(4), 1389–1395 (2002). https://doi.org/10.1063/1.1451081

    Article  Google Scholar 

  • Kim, J.-H., Ochoa, J.A., Whitaker, S.: Diffusion in anisotropic porous media. Transp. Porous Media 2(4), 327–356 (1987). https://doi.org/10.1007/BF00136440

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, Coalescence, and Mixing in Porous Media. Phys. Rev. Lett. 110, 204501 (2013)

    Article  Google Scholar 

  • Mejri, E., Bouhlila, R., Helmig, R.: Heterogeneity effects on evaporation-induced halite and gypsum co-precipitation in porous media. Transp. Porous Media 118(1), 39–64 (2017). https://doi.org/10.1007/s11242-017-0846-8

    Article  Google Scholar 

  • Nachshon, U., Shahraeeni, E., Or, D., Dragila, M., Weisbrod, N.: Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resour. Res. (2011a). https://doi.org/10.1029/2011wr010776

    Google Scholar 

  • Nachshon, U., Weisbrod, N., Dragila, M.I., Grader, A.: Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res. (2011b). https://doi.org/10.1029/2010wr009677

    Google Scholar 

  • Or, D., Lehmann, P., Shahraeeni, E., Shokri, N.: Advances in soil evaporation physics—a review. Vadose Zone J. (2013). https://doi.org/10.2136/vzj2012.0163

    Google Scholar 

  • Penman, H.L.: Natural evaporation from open water, hare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 193(1032), 120–145 (1948)

    Article  Google Scholar 

  • Plouraboué, F., Flukiger, F., Prat, M., Crispel, P.: Geodesic network method for flows between two rough surfaces in contact. Phys. Rev. E 73(3), 036305 (2006)

    Article  Google Scholar 

  • Puyate, Y.T., Lawrence, C.J.: Effect of solute parameters on wick action in concrete. Chem. Eng. Sci. 54(19), 4257–4265 (1999). https://doi.org/10.1016/S0009-2509(99)00158-X

    Article  Google Scholar 

  • Puyate, Y.T., Lawrence, C.J.: Steady state solutions for chloride distribution due to wick action in concrete. Chem. Eng. Sci. 55, 3329–3334 (2000). https://doi.org/10.1016/S0009-2509(99)00566-7

    Article  Google Scholar 

  • Puyate, Y.T., Lawrence, C.J., Buenfeld, N.R., McLoughlin, I.M.: Chloride transport models for wick action in concrete at large Peclet number. Phys. Fluids 10(3), 566–575 (1998). https://doi.org/10.1063/1.869584

    Article  Google Scholar 

  • Slichter, C.S.: Field measurements of the rate of movement of underground waters. In: Water-Supply and Irrigation Paper No. 140, Series 0, Underground Waters, 43, Washington Government Printing Office (1905)

  • Veran-Tissoires, S., Prat, M.: Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation. J. Fluid Mech. 749, 701–749 (2014). https://doi.org/10.1017/jfm.2014.247

    Article  Google Scholar 

  • Veran-Tissoires, S., Marcoux, M., Prat, M.: Discrete salt crystallization at the surface of a porous medium. Phys. Rev. Lett. 108(5), 054502 (2012a)

    Article  Google Scholar 

  • Veran-Tissoires, S., Marcoux, M., Prat, M.: Salt crystallisation at the surface of a heterogeneous porous medium. EPL (Europhys. Lett.) 98(3), 34005 (2012b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prat.

Appendix

Appendix

The filtration velocity distribution at the inlet of the system can be estimated as follows. Sufficiently away from the top surface the pressure only depends on z (thus is independent of x) and is the same in all media. Let us denote this pressure by P*.

Thus, the velocity away from the evaporative surface can be expressed as

$$ V_{y} = - \frac{k}{\mu }\frac{{{\text{d}}P^{*} }}{{{\text{d}}y}} $$
(A-1)

Since the velocity is known on the top surface (Vy = V0 = j/ρ), expressing the flow rate conservation reads

$$ \int\limits_{0}^{{L_{x} }} {V_{y} {\text{d}}x} = - \frac{1}{\mu }\frac{{{\text{d}}P^{*} }}{{{\text{d}}y}}\int\limits_{0}^{{L_{x} }} k {\text{d}}x = L_{x} V_{0} $$
(A-2)

leading to

$$ \frac{{{\text{d}}P^{*} }}{{{\text{d}}z}} = - \frac{{\mu V_{0} }}{\left\langle k \right\rangle } $$
(A-3)

where

$$ \left\langle k \right\rangle = \frac{1}{{L_{x} }}\int\limits_{0}^{{L_{x} }} {k{\text{d}}x} $$
(A-4)

As a result, the velocity sufficiently away from the surface and thus at the inlet is given by

$$ V_{y} = \frac{k}{\left\langle k \right\rangle }V_{0} $$
(A-5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidri, F., Diouf, B., Bouhlila, R. et al. Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium. Transp Porous Med 128, 861–879 (2019). https://doi.org/10.1007/s11242-018-1098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1098-y

Keywords

Navigation