Log in

Heterogeneity Effects on Evaporation-Induced Halite and Gypsum Co-precipitation in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Understanding evaporation from porous media in the presence of soluble salts plays a key role in describing many environmental processes. Several studies done in this field led to a wide acceptance that the prediction of soil salinization driven by evaporation from the unsaturated zone and mainly encountered in arid and semiarid regions is a challenging task because of the temporal and spatial variabilities of soil rocks combined with different interactions between the porous medium and the atmosphere. In this work, we present a reactive transport model developed with the aim of describing the processes of evaporation, salt accumulation and precipitation. We took the model presented in our previous paper (Jambhekar et al. in Transp Porous Media 114:341–369, 2016) as the basis and developed it with the required geochemical model to account for evaporative salt co-precipitation. The salts considered in this work are halite (NaCl) and gypsum (CaSO\(_{4}\cdot 2\mathrm{H}_{2}\)O). We focus particularly on the influence of spatial heterogeneities in the porous medium on the dynamics of the physical processes. In the numerical simulations performed in this work, we distinguished different heterogeneity configurations. The results show that the drying from heterogeneous porous media initially affects the coarser pores, where the salt crystals first appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

[taken from Nachshon et al. (2011b)]

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Appelo, C.A.J., Posma, D.: Geochemistry, Groundwater and Pollution, 2nd edn. Balkema, Leiden (2005)

    Book  Google Scholar 

  • Balan, B., Mohaghegh, S., Ameri, S.: State-of-the-art in permeability determination from well log data: part 1—a comparative study, model development. In: SPE, p. 30978 (1995)

  • Battistelli, A., Calore, C., Pruess, K.: Analysis of salt effects on the depletion of fractured reservoir blocks, pp. 1613–1618. In World Geothermal Congress, Florence, Proceedings (1995)

    Google Scholar 

  • Batzle, M.L., Wang, Z.: Seismic properties of pore fluids. Geophysics 57, 1396–1408 (1992)

    Article  Google Scholar 

  • Bechtold, M., Haber-Pohlmeier, S., Vanderborght, J., Pohlmeier, A., Ferré, T.P.A., Vereecken, H.: Near-surface solute redistribution during evaporation. Geophys. Res. Lett. 38, L17404 (2011). doi:10.1029/2011GL048147

    Article  Google Scholar 

  • Bernabé, Y., Mok, U., Evans, B.: Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl. Geophys. 160(5), 937–960 (2003)

    Article  Google Scholar 

  • Bonn, N.S., Desarnaud, J., Bertrand, F., Chateau, X., Bonn, D.: Damage in porous media due to salt crystallization. Phys. Rev. E 81, 066110 (2010)

    Article  Google Scholar 

  • Bouchelaghem, F.: A numerical and analytical study on calcite dissolution and gypsum precipitation. Appl. Math. Model. 34, 467–480 (2010)

    Article  Google Scholar 

  • Bouhlila, R.: Ecoulement, transport et réactions géochimiques couplés dans les milieux poreux. Thèse de doctorat détat en sciences de lUniversité Tunis II (ENIT), Cas des sels et des saumures (1999)

    Google Scholar 

  • Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Hydrology Papers. Colorado State University, Fort Collins (1964)

    Google Scholar 

  • Class, H., Helmig, R., Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media: 1. An efficient solution technique. Adv. Water Resour. 25(5), 533–550 (2002)

    Article  Google Scholar 

  • Colon, F., et al.: Experimental investigation of the effect of dissolution on sandstone permeability, porosity and reactive surface area. Geomech. Cosmochim. Acta 68, 805–817 (2004)

    Article  Google Scholar 

  • Derluyn, H., Moonen, P., Carmeliet, J.: Deformation and damage due to drying-induced salt crystallization in porous limestone. J. Mech. Phys. Solids 63, 242–255 (2014). doi:10.1016/j.jmps.2013.09.005

    Article  Google Scholar 

  • Desarnaud, J., Derluyn, H., Molari, L., de Miranda, S., Cnudde, V., Shahidzadeh, N.: Drying of salt contaminated porous media: effect of primary and secondary nucleation. J. Appl. Phys. 118, 114901 (2015). doi:10.1063/1.4930292

    Article  Google Scholar 

  • Eloukabi, H., Sghaier, N.: Ben Nasrallah, S., Prat, M.: Experimental study of the effect of sodium chloride on drying of porous media: the crusty-patchy efflorescence transition. Int. J. Heat Transf. 56, 80–93 (2013)

    Article  Google Scholar 

  • Espinosa-Marzal, R.M., Scherer, G.W.: Impact of in-pore salt crystallization on transport properties. Environ. Earth Sci. 69, 2657–2669 (2013)

    Article  Google Scholar 

  • Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMuX: DUNE for multi-phase, component, scale, physics., flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011). doi:10.1016/j.advwatres.2011.03.007

  • Fujimaki, H., Shimano, T., Inoue, M., Nakane, K.: Effect of a salt crust on evaporation from a bare saline soil. Vadose Zone J. 5(4), 1246–1256 (2006)

    Article  Google Scholar 

  • Hachicha, M.: Les sols sals et leur mise en valeur en Tunisie. Revue Scheresse 18(1), 45–50 (2007)

    Google Scholar 

  • Helmig, R.: Multiphase Flow and Transport Processes in the Subsurfaces: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)

    Book  Google Scholar 

  • Helmig, R., Huber, R.: Comparison of Galerkin-type discretization techniques for two-phase flow in heterogeneous porous media. Adv. Water Resour. 21, 697–711 (1998)

    Article  Google Scholar 

  • Helmig, R., Weiss, A., Wohlmuth, B.: Dynamic effects in heterogeneous porous media. Comput. Geosci. 11, 261–274 (2007)

    Article  Google Scholar 

  • Hidri, F.: Evaporation from a porous medium containing a dissolved salt. Influence of heterogeneities at Darcy’s scale on the distribution of ions at the evaporative surface. Ph.D. Thesis (2013)

  • Jambhekar, V.A.: Numerical modeling and analysis of evaporative salinization in a coupled free-flow porous-media system. Ph.D. Thesis (2016)

  • Jambhekar, V.A., Helmig, R., Schröder, N., Shokri, N.: Free-flow-porous-media coupling for evaporation-driven transport and precipitation of salt. Transp. Porous Media (2015). doi:10.1007/s11242-015-0516-7

    Google Scholar 

  • Jambhekar, V.A., Mejri, E., Schröder, N., Helmig, R., Shokri, N.: Kinetic approach to model reactive transport and mixed salt precipitation in a coupled free-flow-porous-media system. Transp. Porous Media 114, 341–369 (2016)

    Article  Google Scholar 

  • Koniorczyk, M.: Salt precipitation and crystallization in non-isothermal, partially saturated porous materials considering ions interaction model. Int. J. Heat Mass Transf. 55, 665–679 (2012)

    Article  Google Scholar 

  • Lai, K.H., Chen, J.S., Liu, C.W., Yang, S.Y.: Effect of permeability-porosity functions on simulated morphological evolution of a chemical dissolution front. Hydrol. Process. (2012). doi:10.1002/hyp.9492

    Google Scholar 

  • Laabidi, E., Bouhlila, R.: Impact of mixing induced calcite precipitation on the flow and transport. Carbonates Evaporites (2016). doi:10.1007/s13146-016-0305-6

    Google Scholar 

  • Le, D., Hoang, H., Mahadevan, J.: Impact of capillary-driven liquid films on salt crystallization. Transp. Porous Media 80, 229–252 (2009)

    Article  Google Scholar 

  • Lehmann, P., Assouline, S., Or, D.: Characteristic lenghts affecting evaporative drying of porous media. Phys. Rev. E 77, 056309 (2008)

    Article  Google Scholar 

  • Lehmann, P., Or, D.: Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E 80, 046318 (2009)

    Article  Google Scholar 

  • Madé, B., Clément, A., Britz, B.: Modelling mineral/solution interactions: the thermodynamic and kinetic code KINDISP. Comput. Geosci. 20(9), 1347–1363 (1994)

    Article  Google Scholar 

  • Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47, W10522 (2011). doi:10.1029/2011WR010685

    Article  Google Scholar 

  • Nachshon, U., Shahraeeni, E., Or, D., Dragila, M., Weisbrod, N.: Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resour. Res. 47, W12519 (2011a). doi:10.1029/2011WR010776

    Google Scholar 

  • Nachshon, U., Weisbrod, N., Dragila, M.I., Grader, A.: Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res. 47, W03513 (2011b). doi:10.1029/2010WR009677

    Google Scholar 

  • Nassar, I.N., Horton, R.: Salinity and compaction effects on soil water evaporation and water and solute distribution. Soil Sci. Soc. Am. J. 63, 752 (1999)

    Article  Google Scholar 

  • Nicolai, A., Grunewald, J., Zhang, J.S.: Salztransport und Phasenumwandlung-Modellierung und numerische Lsung im Simulationsprogramm Delphin 5. Bauphysik 29(3), 231–239 (2007). doi:10.1002/bapi.200710032

    Article  Google Scholar 

  • Pape, H., Clauser, C., Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64, 1447–1460 (1997)

    Article  Google Scholar 

  • Peyson, Y., Bazin, B., Magnier, C., Kohler, E., Youssef, S.: Permeability alteration due to salt precipitation driven by drying in the context of \(CO_2\) injection. Energy Procedia 4, 4387–4394 (2011)

    Article  Google Scholar 

  • Pina Jasson, E., Donado, L.D., Bustos, M.C.: Multi-component reactive transport modelling in a 1D column. In: XIX International Conference on Water Resources CMWR (2012)

  • Sghaier, N., Prat, M.: Effect of efflorescence formation on drying kinetics of porous media. Transp. Porous Media 80, 441–454 (2009). doi:10.1007/S11242-009-9373-6

    Article  Google Scholar 

  • Shimojima, F., Yoshioka, R., Tamagawa, I.: Salinization owing to evaporation from bare soil surfaces and its influences on the evaporation. J. Hydrol. 176, 109–136 (1996)

    Article  Google Scholar 

  • Shokri, N., Lehman, P., Or, D.: Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: pore scale processes near vaporization surface. Phys. Rev. E 81(4, Part2), 046308 (2010)

  • Tsypkin, G., Woods, A.W.: Precipitate formation in a porous rock through evaporation of saline water. J. Fluid Mech. 537, 35–53 (2005)

    Article  Google Scholar 

  • Van Dam, J.C., Feddes, R.A.: Numerical simulations of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 233, 72–85 (2000)

    Article  Google Scholar 

  • Veran-Tissoires, S., Marcoux, M., Prat, M.: Salt crystallization at the surface of a heterogeneous porous medium. Letters 98, 34005 (2012)

    Google Scholar 

  • Veran-Tissoires, S., Prat, M.: Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation. J. Fluid Mech. 749, 701–749 (2014)

    Article  Google Scholar 

  • Xu, T., Ontoy, Y., Molling, P., Spycher, N., Parini, M., Pruess, K.: Reactive transport modeling of injection well scaling and acidizing at Tiwi. Philippines. Geothermics 33(4), 447–491 (2004). doi:10.1016/j.geothermics

    Google Scholar 

  • Zeidouni, M., Darvish, M.P., Keith, D.: Analytical solution to evaluate salt precipitation during \(CO_2\) injection in saline aquifers. Int. J. Greenh. Gas Control 3(5), 600–611 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the German Academic Exchange Service (DAAD) for funding the research work subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mejri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejri, E., Bouhlila, R. & Helmig, R. Heterogeneity Effects on Evaporation-Induced Halite and Gypsum Co-precipitation in Porous Media. Transp Porous Med 118, 39–64 (2017). https://doi.org/10.1007/s11242-017-0846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0846-8

Keywords

Navigation