Log in

Multiple equilibrium states in large arrays of globally coupled resonators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work considers the response of an array of oscillators, each with cubic nonlinear stiffness, in the presence of global reactive and dissipative coupling. The interplay between the excitation, global coupling, and nonlinearity gives rise to steady-state solutions for the population in which the response of each individual element depends on that of every other component. The present analysis continues the work presented in Borra et al. (J Sound Vib 393:232–239, 2017. https://doi.org/10.1016/j.jsv.2016.12.021), in which a continuum formulation was introduced to study the steady-state response as the number of oscillators increases. However, that work considered only parameter values and excitation levels for which the equilibrium distribution was unique. In the present work, the individual resonators are excited to sufficient amplitude to allow for multiple coexisting equilibrium population distributions. The method of multiple scales is then applied to the system to describe evolution equations for the amplitude and phase of each resonator. Because of the global nature of the coupling, this leads to an integro-differential equation for the stationary populations. Moreover, the characteristic equation used to determine the stability of these states is also an integral equation and admits both a discrete and continuous spectrum for its eigenvalues. The equilibrium structure of the system is studied as the reactive and dissipative coupling parameters are varied. For specific families of the equilibrium distributions, two-parameter bifurcation sheets can be constructed. These sheets are connected as individual resonators transition between different branches for the corresponding individual resonators. The resulting one-parameter bifurcation curves are then understood in terms of the collections of these identified bifurcation sheets. The analysis is demonstrated for a system of \(N = 10\) coupled resonators with mass detuning and extended results with \(N = 100\) coupled resonators are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. With \(N = 10\) all eigenvalues arise from the discrete spectrum. However, it is convenient to associate them with either the continuous or discrete spectra that exist in the continuum limit as \(N \rightarrow \infty \).

References

  1. Borra, C., Pyles, C.S., Wetherton, B.A., Quinn, D.D., Rhoads, J.F.: The dynamics of large-scale arrays of coupled resonators. J. Sound Vib. 392, 232–239 (2017). https://doi.org/10.1016/j.jsv.2016.12.021

    Article  Google Scholar 

  2. Buks, E., Roukes, M.L.: Electrically tunable collective response in a coupled micromechanical array. J. Microelectromech. Syst. 11, 802–807 (2002). https://doi.org/10.1109/JMEMS.2002.805056

    Article  Google Scholar 

  3. Chakraborty, G., Jani, N.: Nonlinear dynamics of resonant microelectromechanical system (MEMS): a review. Mechanical (2021). https://doi.org/10.1007/978-981-15-5712-53

    Article  Google Scholar 

  4. Chellasivalingam, M., Imran, H., Pandit, M., Boies, A.M., Seshia, A.A.: Weakly coupled piezoelectric MEMS resonators for aerosol sensing. Sensors 20, 3162 (2020). https://doi.org/10.3390/S20113162

    Article  Google Scholar 

  5. Chen, Q., Lai, Y.C., Dietz, D.: Inducing intrinsic localized modes in microelectromechanical cantilever arrays by frequency modulation. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3216054

    Article  Google Scholar 

  6. Danzl, P., Moehlis, J.: Weakly coupled parametrically forced oscillator networks: existence, stability, and symmetry of solutions. Nonlinear Dyn. 59, 661–680 (2010). https://doi.org/10.1007/s11071-009-9569-x

    Article  MATH  Google Scholar 

  7. DeMartini, B.E., Rhoads, J.F., Shaw, S.W., Turner, K.L.: A single input-single output mass sensor based on a coupled array of microresonators. Sens. Actuat. A 137, 147–156 (2007)

    Article  Google Scholar 

  8. DeMartini, B.E., Rhoads, J.F., Zielke, M.A., Owen, K.G., Shaw, S.W., Turner, K.L.: A single input-single output coupled microresonator array for the detection and identification of multiple analytes. Appl. Phys. Lett. 93, 54102 (2008)

    Article  Google Scholar 

  9. Dick, A.J., Balachandran, B., Mote, C.D.: Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes. Nonlinear Dyn. 54, 13–29 (2008). https://doi.org/10.1007/s11071-007-9288-0

    Article  MATH  Google Scholar 

  10. Formica, G., Lacarbonara, W., Yabuno, H.: Nonlinear dynamic response of nanocomposite microbeams array for multiple mass sensing. Nanomaterials 13, 1808 (2023). https://doi.org/10.3390/nano13111808

    Article  Google Scholar 

  11. Grate, J.W.: Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100, 2627–2648 (2000). https://doi.org/10.1021/cr980094j

    Article  Google Scholar 

  12. Guo, M., Fang, J., Chen, J., Li, B., Chen, H., Zhou, Q., Wang, Y., Song, H., Arutyunov, K.Y., Guo, G., Wang, Z., Deng, G.: Mode coupling in electromechanical systems: recent advances and applications. Adv. Electron. Mater. (2023). https://doi.org/10.1002/aelm.202201305

    Article  Google Scholar 

  13. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67, 1–36 (2012). https://doi.org/10.1007/s11071-010-9888-y

    Article  MATH  Google Scholar 

  14. Hajjaj, A., Jaber, N., Ilyas, S., Alfosail, F., Younis, M.: Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int. J. Non-Linear Mech. 119, 103328 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103328

    Article  Google Scholar 

  15. Harne, R., Wang, K.: A bifurcation-based coupled linear-bistable system for microscale mass sensing. J. Sound Vib. 333, 2241–2252 (2014). https://doi.org/10.1016/j.jsv.2013.12.017

    Article  Google Scholar 

  16. Hoppensteadt, F.C., Izhikevich, E.M.: Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl 48, 133–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Issa, J.S., Shaw, S.W.: Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers. J. Sound Vib. 348, 105–125 (2015). https://doi.org/10.1016/j.jsv.2015.03.021

    Article  Google Scholar 

  18. Judge, J.A., Houston, B.H., Photiadis, D.M., Herdic, P.C.: Effects of disorder in one- and two-dimensional micromechanical resonator arrays for filtering. J. Sound Vib. 290, 1119–1140 (2006). https://doi.org/10.1016/J.JSV.2005.05.003

    Article  Google Scholar 

  19. Judge, J.A., Woods, T.J., Vignola, J.F.: Considerations for use of square-paddle resonators for arrays of micro- and nanoscale devices. Proc. ASME Des. Eng. Tech. Conf. Am. Soc. Mech. Eng. Digit. Collect. 6, 647–654 (2010). https://doi.org/10.1115/DETC2009-87441

    Article  Google Scholar 

  20. Kenig, E., Lifshitz, R., Cross, M.C.: Pattern selection in parametrically driven arrays of nonlinear resonators. Phys. Rev. E 79, 26203 (2009)

    Article  Google Scholar 

  21. Kenig, E., Malomed, B.A., Cross, M.C., Lifshitz, R.: Intrinsic localized modes in parametrically driven arrays of nonlinear resonators. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80, 46202 (2009). https://doi.org/10.1103/PhysRevE.80.046202

    Article  Google Scholar 

  22. Kumar, A., Mohanty, P.: Autoassociative memory and pattern recognition in micromechanical oscillator network. Sci. Rep. 7, 411 (2017). https://doi.org/10.1038/s41598-017-00442-y

    Article  Google Scholar 

  23. Kumar, V., Boley, J.W., Yang, Y., Ekowaluyo, H., Miller, J.K., Chiu, G.T.C., Rhoads, J.F.: Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3574920

    Article  Google Scholar 

  24. Lang, H.P., Berger, R., Battiston, F., Ramseyer, J.P., Meyer, E., Andreoli, C., Brugger, J., Vettiger, P., Despont, M., Mezzacasa, T., Scandella, L., Güntherodt, H.J., Gerber, C., Gimzewski, J.K.: A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Appl. Phys. A 66, 61–64 (1998)

    Article  Google Scholar 

  25. Mahboob, I., Mounaix, M., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: A multimode electromechanical parametric resonator array. Sci. Rep. 4, 1–8 (2014). https://doi.org/10.1038/srep04448

    Article  Google Scholar 

  26. Martnez, N.F., Kosaka, P.M., Tamayo, J., Ramrez, J., Ahumada, O., Mertens, J., Hien, T.D., Rijn, C.V., Calleja, M.: High throughput optical readout of dense arrays of nanomechanical systems for sensing applications. Rev. Sci. Instrum. (2010). https://doi.org/10.1063/1.3525090

    Article  Google Scholar 

  27. Meesala, V.C., Hajj, M.R., Abdel-Rahman, E.: Bifurcation-based MEMS mass sensors. Int. J. Mech. Sci. 180, 105705 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105705

    Article  Google Scholar 

  28. Murray, A.K., Meseke, J.R., Bajaj, N., Rhoads, J.F.: Addressing the practical limitations of volatile organic compound sensors through an oscillator-based sensing array. IEEE Sens. J. 21, 2169–2175 (2021). https://doi.org/10.1109/JSEN.2020.3020849

    Article  Google Scholar 

  29. Nakamoto, T., Fukunishi, K., Moriizumi, T.: Identification capability of odor sensor using quartz-resonator array and neural-network pattern recognition. Sens. Actuat. B Chem. 1, 473–476 (1990). https://doi.org/10.1016/0925-4005(90)80252-U

    Article  Google Scholar 

  30. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995). https://doi.org/10.1002/9783527617586

    Book  MATH  Google Scholar 

  31. Nguyen, V.N., Baguet, S., Lamarque, C.H., Dufour, R.: Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dyn. 79, 647–662 (2015). https://doi.org/10.1007/s11071-014-1692-7

    Article  Google Scholar 

  32. Pyles, C.S., Bajaj, N., Rhoads, J.F., Weinstein, D., Quinn, D.D.: The dynamics of large systems of globally coupled, mistuned electromechanical resonators. In: Proceedings of the ASME Design Engineering Technical Conference, American Society of Mechanical Engineers Digital Collection, vol 8 (2018). https://doi.org/10.1115/DETC2018-86138

  33. Qin, Y., Menara, T., Bassett, D.S., Pasqualetti, F.: Phase-amplitude coupling in neuronal oscillator networks. Phys. Rev. Res. 3, 23218 (2021). https://doi.org/10.1103/PhysRevResearch.3.023218

    Article  Google Scholar 

  34. Quinn, D.D., Rand, R.H., Strogatz, S.H.: Singular unlocking transition in the Winfree model of coupled oscillators. Phys. Rev. E 75, 36218 (2007). https://doi.org/10.1103/PhysRevE.75.036218

    Article  MathSciNet  Google Scholar 

  35. Requa, M.V., Turner, K.L.: Electromechanically driven and sensed parametric resonance in silicon microcantilevers. Appl. Phys. Lett. 88, 263508 (2006)

    Article  Google Scholar 

  36. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. J. Dyn. Syst. Meas. Control Trans. ASME 132, 1–14 (2010). https://doi.org/10.1115/1.4001333

    Article  Google Scholar 

  37. Rosenberg, S., Shoshani, O.: Amplifying the response of a driven resonator via nonlinear interaction with a secondary resonator. Nonlinear Dyn. 105, 1427–1436 (2021). https://doi.org/10.1007/s11071-021-06659-x

    Article  Google Scholar 

  38. Ryan, T.J., Judge, J.A., Vignola, J.F., Glean, A.A.: Noise sensitivity of a mass detection method using vibration modes of coupled microcantilever arrays. Appl. Phys. Lett. 101, 043104 (2012). https://doi.org/10.1063/1.4737636

    Article  Google Scholar 

  39. Sabater, A.B., Rhoads, J.F.: Dynamics of globally and dissipatively coupled resonators. J. Vib. Acoust. 137, 21016 (2015)

    Article  Google Scholar 

  40. Sabater, A.B., Rhoads, J.F.: Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime. Mech. Syst. Signal Process. 84, 241–264 (2017). https://doi.org/10.1016/j.ymssp.2016.06.003

    Article  Google Scholar 

  41. Sabater, A.B., Kumar, V., Mahmood, A., Rhoads, J.F.: On the nonlinear dynamics of electromagnetically transduced microresonators. J. Microelectromech. Syst. 22, 1020–1031 (2013)

    Article  Google Scholar 

  42. Sabater, A.B., Hunkler, A.G., Rhoads, J.F.: A single-input, single-output electromagnetically-transduced microresonator array. J. Micromech. Microeng. 24, 65005 (2014)

    Article  Google Scholar 

  43. Sato, M., Sievers, A.J.: Visualizing intrinsic localized modes with a nonlinear micromechanical array. Low Temp. Phys. 34, 543–548 (2008). https://doi.org/10.1063/1.2957286

    Article  Google Scholar 

  44. Sosa, R.I., Zanette, D.H.: Multistability of globally coupled Duffing oscillators. Int. J. Bifurc. Chaos 31, 2150056 (2021). https://doi.org/10.1142/S0218127421500565

    Article  MathSciNet  MATH  Google Scholar 

  45. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Thiruvenkatanathan, P., Woodhouse, J., Yan, J., Seshia, A.A.: Limits to mode-localized sensing using micro- and nanomechanical resonator arrays. J. Appl. Phys. 109, 104903 (2011). https://doi.org/10.1063/1.3590143

    Article  Google Scholar 

  47. Truitt, P.A., Hertzberg, J.B., Huang, C.C., Ekinci, K.L., Schwab, K.C.: Efficient and sensitive capacitive readout of nanomechanical resonator arrays. Nano Lett. 7, 120–126 (2007). https://doi.org/10.1021/nl062278g

    Article  Google Scholar 

  48. Varshney, M., Waggoner, P.S., Tan, C.P., Aubin, K., Montagna, R.A., Craighead, H.G.: Prion protein detection using nanomechanical resonator arrays and secondary mass labeling. Anal. Chem. 80, 2141–2148 (2008). https://doi.org/10.1021/ac702153p

    Article  Google Scholar 

  49. Venstra, W.J., Zant, H.S.V.D.: Efficient readout of micromechanical resonator arrays in ambient conditions. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.3042097

    Article  Google Scholar 

  50. Villarroya, M., Verd, J., Teva, J., Abadal, G., Forsen, E., Murano, F.P., Uranga, A., Figueras, E., Montserrat, J., Esteve, J., Boisen, A., Barniol, N.: System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection. Sens. Actuat. A 132, 154–164 (2006). https://doi.org/10.1016/j.sna.2006.04.002

    Article  Google Scholar 

  51. Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. (2012). https://doi.org/10.1088/0960-1317/22/3/035004

    Article  Google Scholar 

  52. Yoshikawa, G., Lang, H.P., Akiyama, T., Aeschimann, L., Staufer, U., Vettiger, P., Aono, M., Sakurai, T., Gerber, C.: Sub-ppm detection of vapors using piezoresistive microcantilever array sensors. Nanotechnology (2009). https://doi.org/10.1088/0957-4484/20/1/015501

  53. Zhao, C., Montaseri, M.H., Wood, G.S., Pu, S.H., Seshia, A.A., Kraft, M.: A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuat. A 249, 93–111 (2016). https://doi.org/10.1016/j.sna.2016.07.015

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by the National Science Foundation under Grant Nos. 1537701 and 1537988.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Formulation and analysis were performed by CB and DDQ, who also completed the initial draft. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Dane Quinn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borra, C., Bajaj, N., Rhoads, J.F. et al. Multiple equilibrium states in large arrays of globally coupled resonators. Nonlinear Dyn 111, 18585–18603 (2023). https://doi.org/10.1007/s11071-023-08870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08870-4

Keywords

Navigation