Log in

Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic response of parametrically excited microbeam arrays is governed by nonlinear effects which directly influence their performance. To date, most widely used theoretical approaches, although opposite extremes with respect to complexity, are nonlinear lumped-mass and finite-element models. While a lumped-mass approach is useful for a qualitative understanding of the system response it does not resolve the spatio-temporal interaction of the individual elements in the array. Finite-element simulations, on the other hand, are adequate for static analysis, but inadequate for dynamic simulations. A third approach is that of a reduced-order modeling which has gained significant attention for single-element micro-electromechanical systems (MEMS), yet leaves an open amount of fundamental questions when applied to MEMS arrays. In this work, we employ a nonlinear continuum-based model to investigate the dynamic behavior of an array of N nonlinearly coupled microbeams. Investigations focus on the array’s behavior in regions of its internal one-to-one, parametric, and several internal three-to-one and combination resonances, which correspond to low, medium and large DC-voltage inputs, respectively. The nonlinear equations of motion for a two-element system are solved using the asymptotic multiple-scales method for the weakly nonlinear system in the afore mentioned resonance regions, respectively. Analytically obtained results of a two-element system are verified numerically and complemented by a numerical analysis of a three-beam array. The dynamic behavior of the two- and three-beam systems reveal several in- and out-of-phase co-existing periodic and aperiodic solutions. Stability analysis of such co-existing solutions enables construction of a detailed bifurcation structure. This study of small-size microbeam arrays serves for design purposes and the understanding of nonlinear nearest-neighbor interactions of medium- and large-size arrays. Furthermore, the results of this present work motivate future experimental work and can serve as a guideline to investigate the feasibility of new MEMS array applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baller, M., Lang, H., Fritz, J., Gerber, C., Gimzewski, J., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F., Ramseyer, J., Fornaro, P., Meyer, E., Guntherodt, H.-J.: Ultramicroscopy 82, 1–9 (2000)

    Article  Google Scholar 

  2. Barber, D.J.: Ultramicroscopy 52, 101 (1997)

    Article  Google Scholar 

  3. Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K.: Proc. R. Soc. Lond. A 458, 563–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bromberg, Y., Cross, M.C., Lifshitz, R.: Phys. Rev. E 73, 016214 (2006)

    Article  Google Scholar 

  5. Brown, E., Holmes, P., Moehlis, J.: In: Kaplan, E., Marsden, J., Screenivasan, K. (eds.) Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich, pp. 183–215. Springer, New York (2003)

    Google Scholar 

  6. Buks, E., Roukes, M.L.: J. Microelectromech. Syst. 11(6), 802–807 (2002)

    Article  Google Scholar 

  7. Danzl, P., Moehlis, J.: Nonlinear Dyn. 59, 661–680 (2010)

    Article  MATH  Google Scholar 

  8. Despont, M., Drechsler, U., Yu, R., Pogge, H.B., Vettiger, P.: J. Microelectromech. Syst. 13(6), 895–901 (2004)

    Article  Google Scholar 

  9. Dick, A.J., Balachandran, B., Mote, C.D. Jr.: In: Proc. of IMECE 2005, Orlando, FL, Nov. 5–11 (2005)

    Google Scholar 

  10. Dick, A.J., Balachandran, B., Mote, C.D. Jr.: Nonlinear Dyn. 54, 13–29 (2008)

    Article  MATH  Google Scholar 

  11. Erbe, A., Blick, R.H., Tilke, A., Kriele, A., Kotthaus, J.P.: Appl. Phys. Lett. 73, 3751 (1998)

    Article  Google Scholar 

  12. Gottlieb, O., Champneys, A.R.: In: IUTAM Chaotic Dynamics and Control of Systems and Processes in Mechanics, pp. 117–126. Springer, Berlin (2005)

    Chapter  Google Scholar 

  13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  14. Gutschmidt, S., Ammon, A.: In: Proc. of 21st ICAST, State College, PA, Oct. 4–6 (2010)

    Google Scholar 

  15. Gutschmidt, S., Gottlieb, O.: In: Proc. of IDETC/CIE 2007, Las Vegas, NV, Sept. 4–7 (2007)

    Google Scholar 

  16. Gutschmidt, S., Gottlieb, O.: J. Sound Vib. 329, 3835–3855 (2010)

    Article  Google Scholar 

  17. Gutschmidt, S., Gottlieb, O.: In: Proc. of 6th EUROMECH Nonlinear Dynamics Conference, St. Petersburg, Russia, June 30–July 4 (2008)

    Google Scholar 

  18. Gutschmidt, S., Gottlieb, O.: Int. J. Bifurc. Chaos 20(3), 605–618 (2010)

    Article  MATH  Google Scholar 

  19. Hagedorn, P., DasGupta, A.: Vibrations and Waves in Continuous Mechanical Systems. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  20. Hikihara, T., Okamoto, Y., Ueda, Y.: Chaos 7(4), 810–816 (1997)

    Article  Google Scholar 

  21. Hikihara, T., Torii, K., Ueda, Y.: Phys. Lett. A 281, 155–160 (2001)

    Article  MATH  Google Scholar 

  22. Hull, R., Stevie, F.A., Bahnck, D.: Appl. Phys. Lett. 66, 341 (1995)

    Article  Google Scholar 

  23. Huygens, C.: Philos. Trans. R. Soc. Lond. 4, 937–953 (1969)

    Google Scholar 

  24. Ilic, B., Yang, Y., Aubin, K., Reichenbach, R., Krylov, S., Craighead, H.G.: Nano Lett. 5(5), 925–929 (2005)

    Article  Google Scholar 

  25. Kaplan, W.: Advanced Calculus. Addison-Wesley, Cambridge (1952)

    MATH  Google Scholar 

  26. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Phys. Rev. B 79, 165309 (2009)

    Article  Google Scholar 

  27. Kimura, H., Shimuzi, K.: In: Materials Research Society Symposium Proceedings, vol. 480, p. 341. MRS, Warrendale (1997)

    Google Scholar 

  28. Krylov, S.: Int. J. Nonlinear Mech. 42, 626–642 (2007)

    Article  Google Scholar 

  29. Lenci, S., Rega, G.: J. Micromech. Microeng. 16, 390–401 (2006)

    Article  Google Scholar 

  30. Lifshitz, R., Cross, M.C.: Phys. Rev. B 67, 134302 (2003)

    Article  Google Scholar 

  31. Meirovitch, L.: Elements of Vibration Analysis. McCraw-Hill, New York (1975)

    MATH  Google Scholar 

  32. Minne, S.C., Manalis, S.R., Quate, C.F.: Bringing Scanning Probe Microscopy up to Speed. Kluwer Academic, Boston (1999)

    Book  Google Scholar 

  33. Mintz, T.: Master Thesis, Technion—Israel Institute of Technology (2009)

  34. Moehlis, J., Knobloch, E.: Phys. Rev. Lett. 80, 5329–5332 (1998)

    Article  Google Scholar 

  35. Moehlis, J., Knobloch, E.: Physica D 135, 263–304 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Napoli, M., Zhang, W., Turner, K., Bamieh, B.: J. Microelectromech. Syst. 14(2), 295–304 (2005)

    Article  Google Scholar 

  37. Nathanson, H.C., Newell, W.E., Wickstrom, R.A., Davis, J.R. Jr.: IEEE Trans. Electron Devices 14, 117–133 (1967)

    Article  Google Scholar 

  38. Nayfeh, A.H.: Nonlinear Interactions. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  39. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  40. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  41. Porfiri, M.: J. Sound Vib. 315, 1071–1085 (2008)

    Article  Google Scholar 

  42. Rhoads, J.F., Shaw, S.W., Turner, K.L.: J. Micromech. Microeng. 16, 890–899 (2006)

    Article  Google Scholar 

  43. Sasoglu, F.M., Bohl, A.J., Layton, B.E.: J. Micromech. Microeng. 17(3), 623–632 (2007)

    Article  Google Scholar 

  44. Senturia, S.D.: Microsystem Design. Kluwer Academic, Boston (2001)

    Google Scholar 

  45. Shabana, A.A.: Theory of Vibration. Springer, New York (1991)

    Google Scholar 

  46. Vettiger, P., Brugger, J., Despont, M., Drechsler, U., Diirig, U., Hgberle, W., Lutwyche, M., Rothuizen, H., Stutz, R., Widmer, R., Binnig, G.: Appl. Phys. Lett. 46(1–4), 11–17 (1999)

    Google Scholar 

  47. Wang, P.K.C.: J. Sound Vib. 213(2), 537–550 (1998)

    Article  Google Scholar 

  48. Wang, P.K.C.: Int. J. Bifurc. Chaos 13, 1019–1027 (2003)

    Article  MATH  Google Scholar 

  49. Zalatdinov, M.K., Baldwin, J.W., Marcus, M.H., Reichenbach, R.B., Parpia, J.M., Houston, B.H.: Appl. Phys. Lett. 88, 143504 (2006)

    Article  Google Scholar 

  50. Zhang, W., Turner, K.: Sens. Actuators A 134, 594–599 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gutschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutschmidt, S., Gottlieb, O. Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn 67, 1–36 (2012). https://doi.org/10.1007/s11071-010-9888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9888-y

Keywords

Navigation