Log in

Peristaltic transportation of hybrid nano-blood through a ciliated micro-vessel subject to heat source and Lorentz force

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The center of interest of this research study is to unfold the phenomena in the electric double layer (EDL) adjacent to the indicted peristaltic wall and its impact on a peristaltic transport of ionized non-Newtonian blood (Jeffrey liquid model) infused with hybridized copper and gold nanoparticles through a ciliated micro-vessel under the buoyancy and Lorentz forces’ action. The energy equation is found with consideration of viscous dissipation and internal heat source impacts. The complicated normalized flow equations are abridged by adopting lubrication and Debye–Hückel linearization postulates. The homotopy perturbation approach is devoted to yield the optimal series solutions of the resulting equations. The amendment in the pertinent hemodynamical characteristics against the significant flow parameters is canvassed via plentiful graphical designs. Outcomes confess that a higher assisting the electric body force and thin EDL significantly opposes the blood flow nearby the ciliated micro-vessel wall. The heat exchange rate for hybrid nano-blood (26% for Cu-Au/blood) is greatly evaluated to nano-blood (20% for Au-blood and 11.4% for Cu-blood). The trapped bolus is expanded due to thinner EDL or longer cilia length. This simulation could help to design electro-osmotic blood pumps, diagnostic devices, pharmacological systems, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\( \tilde{a} \) :

Mean radius of pipe, m

Br :

Brinkman number

c :

Metachronal wave speed (m s−1)

\(c_{{\text{p}}}\) :

Specific heat, J kg−1 K−1

\(e\) :

Net electronic charge, C

\((E_{{{\tilde{\text{R}}}}} ,E_{{{\tilde{\text{Z}}}}} )\) :

Electric filed components, N C1

\(F\) :

Mean flow rate

\(I_{0} ,I_{1} ,I_{2}\) :

Modified Bessel functions of first kind of zero, first and second order

\(g\) :

Acceleration, m s−2

\(Gr\) :

Thermal Grashof number

\(h\) :

Ciliary micro-vessel wall

\(k\) :

Thermal conductivity, W m1 K1

\(K_{{\text{B}}}\) :

Boltzmann constant, J K1

\(\hat{L}\) :

Operator

\(M^{2}\) :

Magnetic field term

\(n_{0}\) :

Average number of cations and anions

\(n^{ + } ,n^{ - }\) :

Number of densities of cations and anions, m3

\(\tilde{P}\) :

Pressure in the laboratory frame, mm Hg or kg m1 s2

\(p\) :

Pressure in wave frame

\(q\) :

Velocity vector, m s−1

\(Q\) :

Volume flow rate

\(Q_{0}\) :

Internal heat source, W m1

\(Re\) :

Reynolds number

\(t\) :

Dimensionless time term

\(T_{{\text{a}}}\) :

Average temperature of electrolytic solution, K

\(\tilde{t}\) :

Dimensional time term

\(\tilde{T}\) :

Blood temperature, K

\(\tilde{T}_{0}\) :

Temperature at blood vessel wall, K

\((u,w)\) :

Dimensionless speed components in \((r,z)\)

\((\tilde{u},\tilde{w})\) :

Moving frame speed components in \((\tilde{r},\tilde{z})\), m s1

\((\tilde{U},\tilde{W})\) :

Fixed frame speed components in \((\tilde{R},\tilde{Z})\), m s1

\(U_{{{\text{hs}}}}\) :

Helmholtz–Smoluchowski velocity parameter

\(\overline{z}\) :

Valence of ions, C

\(\tilde{Z}_{0}\) :

Reference particle position

\(Z^{ * }\) :

Heat transport coefficient, W m2 K1

\(\alpha\) :

Eccentricity due to elliptical action

\(\beta\) :

Wave number, m−1

\(\delta\) :

Cilia length

\(\xi\) :

Heat source term

\(\kappa\) :

Electro-osmotic term

\(\lambda\) :

Metachronal wavelength, m

\(\lambda_{1}\) :

Jeffrey parameter

\(\mu\) :

Constant viscosity coefficient, kg m1 s1

\(\Phi\) :

Non-dimensional electric potential

\(\tilde{\Phi }\) :

Electric potential, V

\((\phi_{1} ,\phi_{2} )\) :

Solid volume fractions of Cu and Au NPs

\(\psi\) :

Stream function

\(\rho\) :

Blood density, Kg m−3

\(\rho_{e}\) :

Net ionic charge density of electrolyte, C m3

\(\tilde{S}\) :

Extra-stress tensor

\(S_{{{\text{ij}}}}\) :

Component of stress tensor

\(\theta\) :

Dimensionless blood temperature

\(s_{1}\) :

Copper nanoparticles (Cu NPs)

\(s_{2}\) :

Gold nanoparticles (Au NPs)

\(f\) :

Base liquid (blood)

\(nf\) :

Cu-blood nanoliquid

\(hnf\) :

Cu-Au/blood hybrid nanoliquid

References

  1. Reuss FF. Charge-induced flow. Proc Imp Soc Nat Moscow. 1809;3:327–44.

    Google Scholar 

  2. Wiedemann G. First quantitative study of electrical endosmose. Poggendorfs Annalen. 1852;87:321–3.

    Google Scholar 

  3. Chaube MK, Yadav A, Tripathi D, Anwar BO. Electroosmotic flow of biorheological micropolar fluids through microfluidic channels. Korea-Aus Rheol J. 2018;30(2):89–98.

    Google Scholar 

  4. Jayavel P, Jhorar R, Tripathi D, Azese MN. Electroosmotic flow of pseudoplastic nanoliquids via peristaltic pum**. J Braz Soc Mech Sci Eng. 2019;41:61.

    Google Scholar 

  5. Ali N, Hussain S, Ullah K. Theoretical analysis of two-layered electro-osmotic peristaltic flow of FENE-P fluid in an axisymmetric tube. Phys Fluids. 2020;32: 023105.

    CAS  Google Scholar 

  6. Noreen S, Waheed S, Lu DC, Tripathi D. Heat stream in electroosmotic bio-fluid flow in straight microchannel via peristalsis. Int Commun Heat Mass Transf. 2021;123: 105180.

    Google Scholar 

  7. Akram J, Akbar NS, Maraj EN. A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water. Alex Eng J. 2020;59:943–56.

    Google Scholar 

  8. Akram J, Akbar NS, Tripathi D. A theoretical investigation on the heat transfer ability of water-based hybrid (Ag-Au) nanofluids and Ag nanofluids flow driven by electroosmotic pum** through a microchannel. Arabian J Sci Eng. 2021;46(3):2911–27.

    CAS  Google Scholar 

  9. Rajashekhar C, Mebarek-Oudina F, Sarris IE, Vaidya H, Prasad KV, Manjunatha G, Balachandra H. Impact of electroosmosis and wall properties in modelling peristaltic mechanism of a Jeffrey liquid through a microchannel with variable fluid properties. Inventions. 2021;6(4):73. https://doi.org/10.3390/inventions6040073.

    Article  Google Scholar 

  10. Zeeshan A, Riaz A, Alzahrani F. Electroosmosis-modulated bio-flow of nanofluid through a rectangular peristaltic pump induced by complex traveling wave with zeta potential and heat source. Electrophoresis. 2021. https://doi.org/10.1002/elps.202100098.

    Article  PubMed  Google Scholar 

  11. Noreen S, Waheed S, Hussanan A. Peristaltic motion of MHD nanofluid in an asymmetric micro-channel with Joule heating, wall flexibility and different zeta potential. Bound Value Probl. 2019. https://doi.org/10.1186/s13661-019-1118-z.

    Article  Google Scholar 

  12. Ramesh K, Tripathi D, Bhatti MM, Khalique CM. Electro-osmotic flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated by peristalsis. J Mol Liq. 2020;314: 113568.

    CAS  Google Scholar 

  13. Ramesh K, Reddy MG, Souayeh B. Electro-magneto-hydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions. Appl Math Mech-Engl Ed. 2021;42:593–606.

    Google Scholar 

  14. Tanveer A, Mahmood S, Hayat T, Alsaedi A. On electroosmosis in peristaltic activity of MHD non-Newtonian fluid. Alexandria Eng J. 2021;60(3):3369–77.

    Google Scholar 

  15. Shafiq J, Mebarek-Oudina F, Sindhu TN, Rassoul G. Sensitivity analysis for Walters' B nanoliquid flow over a radiative Riga surface by RSM. Sci Iran. 2022;29: 1236–49.

  16. Warke AS, Ramesh K, Mebarek-Oudina F, Abidi A. Numerical investigation of nonlinear radiation with Magnetomicropolar stagnation point flow past a heated stretching sheet. J Therm Anal Calorim. 2022;147:6901–12. https://doi.org/10.1007/s10973-021-10976-z.

    Article  CAS  Google Scholar 

  17. Saleem N, Munawar S, Mehmood A, Daqqa I. Entropy production in electroosmotic cilia facilitated stream of thermally radiated nanofluid with ohmic heating. Micromach. 2021;12:1004.

    Google Scholar 

  18. Munawar S, Saleem N. Entropy generation in thermally radiated hybrid nanofluid through an electroosmotic pump with ohmic heating: Case of synthetic cilia regulated stream. Sci Prog. 2021. https://doi.org/10.1177/00368504211025921.

    Article  PubMed  Google Scholar 

  19. Latham TW. Fluid motions in a peristaltic pump. PhD dissertation, Massachusetts Institute of Technology, MA. 1966.

  20. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pum** with long wavelength at low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Google Scholar 

  21. Tripathi D, Yadav A, Anwar Bég O, Kumar R. Study of microvascular non-Newtonian blood flow modulated by electroosmosis. Microvasc Res. 2018;117:28–36.

    PubMed  Google Scholar 

  22. Rashidi MM, Yang Z, Bhatti MM, Abbas MA. Heat and mass transfer analysis on MHD blood flow of Casson fluid model due to peristaltic wave. Therm Sci. 2018;22:2439–48.

    Google Scholar 

  23. Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV, Makinde OD. Effects wall properties on peristaltic transport of Rabinowitsch fluid through an inclined non-uniform slippery tube. Defect Diffus Forum. 2019;392:138–57.

    Google Scholar 

  24. Mehmood OU, Qureshi AA, Yasmin H, Uddin S. Thermo-mechanical analysis of non-Newtonian peristaltic mechanism: modified heat flux model. Phys A Statist Mech Its Appl. 2020;550: 124014.

    Google Scholar 

  25. Vaidya H, Rajashekhar C, Mebarek-Oudina F, Animasaun IL, Prasad KV, Makinde OD. Combined effects of homogeneous and heterogeneous reactions on peristalsis of Ree-Eyring liquid: application in hemodynamic flow. Heat Transf. 2021;50(3):2592–609. https://doi.org/10.1002/htj.21995.

    Article  Google Scholar 

  26. Rajashekhar C, Mebarek-Oudina F, Vaidya H, Prasad KV, Manjunatha G, Balachandra H. Mass and heat transport impact on the peristaltic flow of Ree-Eyring liquid with variable properties for hemodynamic flow. Heat Transf. 2021;50(5):5106–22. https://doi.org/10.1002/htj.22117.

    Article  Google Scholar 

  27. Vaidya H, Choudhari R, Prasad KV, Khan SU, Mebarek-Oudina F, Patil A, Nagathan P. Channel flow of MHD Bingham fluid due to peristalsis with multiple chemical reactions: an application to blood flow through narrow arteries. SN Appl Sci. 2021;3:186. https://doi.org/10.1007/s42452-021-04143-0.

    Article  CAS  Google Scholar 

  28. Maqbool K, Shaheen S, Mann AB. Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube. Springer Plus. 2016;5:1379. https://doi.org/10.1186/s40064-016-3021-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tripathi D, Yadav A, Anwar BO. Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: Mathematical modeling. Math Biosci. 2017;283:155–68.

    PubMed  Google Scholar 

  30. Yasmeen S, Asghar S, Anjum HJ, Ehsan T. Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: quantitative and qualitative approaches. Commun Nonlinear Sci Numer Simul. 2019;76:51–65.

    Google Scholar 

  31. Shaheen S, Maqbool K, Siddiqui AM. Micro rheology of Jeffrey nanofluid through cilia beating subject to the surrounding temperature. Rheol Acta. 2020;59:565–73.

    CAS  Google Scholar 

  32. Vaidya H, Rajashekhar C, Divya BB, Manjunatha G, Prasad KV, Animasaun IL. Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel. Res Phys. 2020;18: 103295.

    Google Scholar 

  33. Abbas Z, Rafiq MY, Hasnain J, Umer H. Impacts of lorentz force and chemical reaction on peristaltic transport of Jeffrey fluid in a penetrable channel with injection/suction at walls. Alex Eng J. 2021;60(1):1113–22. https://doi.org/10.1016/j.aej.2020.10.035.

    Article  Google Scholar 

  34. Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV, Makinde OD, Viharika JU. Impact of variable transport properties and slip effects on MHD Jeffrey fluid flow through channel. Arab J Sci Eng. 2020;45:417–28.

    Google Scholar 

  35. Divya BB, Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV. The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffrey fluid with heat and mass transfer. Alex Eng J. 2020;59(2):693–706.

    Google Scholar 

  36. Riaz A, Ellahi R, Sait SM, Muhammad T. Magnetized Jeffrey nanofluid with energy loss in between an annular part of two micro nonconcentric pipes. Energy sources, Part A: Recovery Utilization, and Environ Effects. 2020. https://doi.org/10.1080/15567036.2020.1798568.

    Article  Google Scholar 

  37. Nadeem S, Akhtar S, Saleem A. Peristaltic flow of a heated Jeffrey fluid inside an elliptic duct: streamline analysis. Appl Math Mech-Engl Ed. 2021;42:583–92.

    Google Scholar 

  38. Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;4: a028241.

    Google Scholar 

  39. Pablo JL, DeCaen PG, Clapham DE. Progress in ciliary ion channel physiology. J Gen Physiol. 2016;1:37–41.

    Google Scholar 

  40. Ghazal S, Makarov JK, De Jonge CJ. Egg transport and fertilization. Glob Libr Women Med. 2014. https://doi.org/10.3843/GLOWM.10317.

    Article  Google Scholar 

  41. Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects. Biol Reprod. 2017;97:522–36.

    PubMed  Google Scholar 

  42. Farooq AA, Shah Z, Kumam P, Alzahrani EO, Shutaywi M, Anwar T. Darcy-Boussinesq model of cilia-assisted transport of a non-Newtonian magneto-biofluid with chemical reactions. Appl Sci. 2020;10:1137. https://doi.org/10.3390/app10031137.

    Article  Google Scholar 

  43. Sadaf H, Kiani A, Mir NA. Mixed convection analysis of cilia-driven flow of a Jeffrey fluid in a vertical tube. Canadian J Phys. 2020;98(2):111–8. https://doi.org/10.1139/cjp-2018-0753.

    Article  CAS  Google Scholar 

  44. Shaheen S, Maqbool K, Ellahi R, Sait SM. Metachronal propulsion of non-Newtonian viscoelastic mucus in an axisymmetric tube with ciliated walls. Commun Theor Phys. 2021;73:035006. https://doi.org/10.1088/1572-9494/abda1c.

    Article  Google Scholar 

  45. Maqbool K, Shaheen S, Bobescu E, Ellahi R. Thermal and concentration analysis of Phan-Thien-Tanner fluid flow due to ciliary movement in a peripheral layer. J Cent South Univ. 2021;28:3327–39. https://doi.org/10.1007/s11771-021-4858-8.

    Article  Google Scholar 

  46. Maqbool K, Manzoor N, Ellahi R, SaitSM. Influence of heat transfer on MHD Carreau fluid flow due to motile cilia in a channel. J Therm Anal Calorim. 2021;144(6):2317–26. https://doi.org/10.1007/s10973-020-10476-6.

    Article  CAS  Google Scholar 

  47. Munawar S. Significance of slippage and electric field in mucociliary transport of biomagnetic fluid. Lubricants. 2021;9:48.

    CAS  Google Scholar 

  48. Shaheen S, Bég OA, Gul F, Maqbool K. Electro-osmotic propulsion of Jeffrey fluid in a ciliated channel under the effect of nonlinear radiation and heat source/sink. ASME J Biomech Eng. 2021;143(5):051008. https://doi.org/10.1115/1.4049810.

    Article  Google Scholar 

  49. Song YQ, Javid K, Khan SU, Khan MI, Sun TC, Khan MI, Malik MY. Hall device impacts on ciliated pump-assisted blood flow of double-diffusion convection of nanofluid in a porous divergent channel. Eur Phys J Plus. 2021;136:667. https://doi.org/10.1140/epjp/s13360-021-01641-3.

    Article  Google Scholar 

  50. Awais M, Shah Z, Perveen N, Ali A, Kumam P, Rehman HU, Thounthong P. MHD effects on ciliary-induced peristaltic flow coatings with rheological hybrid nanofluid. Coatings. 2020;10(2):186. https://doi.org/10.3390/coatings10020186.

    Article  CAS  Google Scholar 

  51. Ramachandran S, Vajravelu K, Prasad KV, Sreenadh S. Peristaltic-ciliary flow of a Casson fluid through an inclined tube. Commun Biomath Sci. 2021;4(1):23–38. https://doi.org/10.5614/cbms.2021.4.1.3.

    Article  Google Scholar 

  52. McCash LB, Nadeem S, Akhtar S, Saleem A, Saleem S, Issakhov A. Novel idea about the peristaltic flow of heated Newtonian fluid in elliptic duct having ciliated walls. Alex Eng J. 2022;61(40):2697–707. https://doi.org/10.1016/j.aej.2021.07.035.

    Article  Google Scholar 

  53. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP(Eds.) Developments and applications of non-Newtonian flows. FED-vol. 231/MD-66, ASME, New York, 1995; pp 99–105.

  54. Asogwa K, Mebarek-Oudina F, Animasaun I. Comparative investigation of Water-based Al2O3 Nanoparticles through Water-based CuO Nanoparticles over an Exponentially Accelerated Radiative Riga Plate Surface via Heat Transport. Arab J Sci Eng. 2022;47:8721–38. https://doi.org/10.1007/s13369-021-06355-3.

    Article  CAS  Google Scholar 

  55. Sheikholeslami M, Ebrahimpour Z. Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape. Int J Thermal Sci. 2022;176:107505. https://doi.org/10.1016/j.ijthermalsci.2022.107505.

    Article  CAS  Google Scholar 

  56. Mebarek-Oudina F, Preeti, Sabu AS, Vaidya H, Lewis RW, Areekara S, Mathew A, Ismail AI. Hydromagnetic flow of magnetite-water nano-fluid utilizing adapted Buongiorno model. Int J Mod Phys B. 2023:2450003. https://doi.org/10.1142/S0217979224500036.

  57. Sheikholeslami M, Farshad SA. Nanoparticles transportation with turbulent regime through a solar collector with helical tapes. Adv Powder Technol. 2022;33(3):103510. https://doi.org/10.1016/j.apt.2022.103510.

    Article  CAS  Google Scholar 

  58. Dharmaiah G, Mebarek-Oudina F, Sreenivasa Kumar M, Chandra Kala K. Nuclear reactor application on Jeffrey fluid flow with Falkner-skan factor, Brownian and thermophoresis, non linear thermal radiation impacts past a wedge. J Ind Chem Soci. 2023;100(2):1009. https://doi.org/10.1016/j.jics.2023.100907.

    Article  CAS  Google Scholar 

  59. Zhang L, Bhatti MM, Shahid A, Ellahi R, Anwar Bég O, Sait SM. Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface: a robust spectral approach. J Taiwan Inst Chem Eng. 2021;124:98–105. https://doi.org/10.1016/j.jtice.2021.04.065.

    Article  CAS  Google Scholar 

  60. Chabani I, Mebarek Oudina F, Vaidya H, Ismail AI. Numerical analysis of magnetic hybrid Nano-fluid natural convective flow in an adjusted porous trapezoidal enclosure. J Magn Magn Mater. 2022;564(2):1701. https://doi.org/10.1016/j.jmmm.2022.170142.

    Article  CAS  Google Scholar 

  61. Sheikholeslami M, Jafaryar M, Barzegar Gerdroodbary M, Alavi AH. Influence of novel turbulator on efficiency of solar collector system. Environ Technol Innov. 2022;26:102383. https://doi.org/10.1016/j.eti.2022.102383.

    Article  CAS  Google Scholar 

  62. Ramesh K, Mebarek-Oudina F, Ismail AI, Jaiswal BR, Warke AS, Lodhi RK, Sharma T. Computational analysis on radiative non-Newtonian Carreau nanofluid flow in a microchannel under the magnetic properties. Sci Iran. 2023;30:376–90.

  63. Reddy YD, Mebarek-Oudina F, Goud BS, Ismail AI. Radiation, Velocity and Thermal Slips Effect Toward MHD Boundary Layer Flow Through Heat and Mass Transport of Williamson Nanofluid with Porous Medium. Arab J Sci Eng. 2022;47(12):16355–69. https://doi.org/10.1007/s13369-022-06825-2.

    Article  CAS  Google Scholar 

  64. Ijaz S, Iqbal Z, Maraj EN, Nadeem S. Investigate of Cu-CuO/blood mediated transportation in stenosed artery with unique features for theoretical outcomes of hemodynamics. J Mol Liq. 2018;254:421–32.

    CAS  Google Scholar 

  65. Saleem A, Akhtar S, Alharbi FM, Nadeem S, Ghalambaz M, Issakhov A. Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Res Phys. 2020;19: 103431.

    Google Scholar 

  66. Das S, Barman B, Jana RN, Makinde OD. Hall and ion slip currents’ impact on electromagnetic blood flow conveying hybrid nanoparticles through an endoscope with peristaltic waves. BioNanoSci. 2021;11:770–92.

    Google Scholar 

  67. Ali A, Jana RN, Das S. Significance of entropy generation and heat source: the case of peristaltic blood flow through a ciliated tube conveying Cu-Ag nanoparticles using Phan-Thien-Tanner model. Biomech Model Mechanobiol. 2021;20:2393–412. https://doi.org/10.1007/s10237-021-01515-8.

    Article  PubMed  Google Scholar 

  68. Das S, Pal TK, Jana RN, Giri B. Ascendancy of electromagnetic force and Hall currents on blood flow carrying Cu-Au NPs in a non-uniform endoscopic annulus having wall slip. Microvas Res. 2021;138: 104191.

    CAS  Google Scholar 

  69. Ali A, Barman A, Das S. Electromagnetic phenomena in cilia actuated peristaltic transport of hybrid nano-blood with Jeffrey model through an artery sustaining regnant magnetic field. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2072533.

    Article  Google Scholar 

  70. Ahmed B, Hayat T, Alsaedi A. Mixed convection peristalsis of hybrid nanomaterial flow in thermally active symmetric channel. Case Stud Therm Eng. 2021;27: 101272.

    Google Scholar 

  71. Hayat T, Nawaz S, Alsaedi A. Modeling and analysis of peristalsis of hybrid nanofluid with entropy generation. J Therm Anal Calorim. 2021;143:1231–49.

    CAS  Google Scholar 

  72. Abo-Elkhair RE, Bhatti MM, Mekheimer KS. Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au-Cu nanoparticles) with moderate Reynolds number: an expanding horizon. Int Commun Heat Mass Transf. 2021;123: 105228.

    CAS  Google Scholar 

  73. Narla VK, Tripathi D, Anwar BO. Analysis of entropy generation in biomimetic electroosmotic nanofluid pum** through a curved channel with Joule dissipation. Therm Sci Eng Prog. 2020;15: 100424.

    Google Scholar 

  74. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138:1311–26.

    CAS  Google Scholar 

  75. Gul F, Maqbool K, Mann AB. Thermal analysis of electroosmotic flow in a vertical ciliated tube with viscous dissipation and heat source effects. J Therm Anal Calorim. 2021;143:2111–23. https://doi.org/10.1007/s10973-020-09702-y.

    Article  CAS  Google Scholar 

  76. Akbar NS, Butt AW. Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia. Int J Biomathematics. 2014;7(6):1450066.

    Google Scholar 

  77. He JH. Homotopy perturbation technique. Comp Meth Appl Mech Eng. 1999;178:257–62.

    Google Scholar 

  78. Liao S. Homotopy analysis method in nonlinear differential equations. Shanghai: Springer; 2011.

    Google Scholar 

  79. Nadeem S, Sadaf H. Trap** study of nanofluids in an annulus with cilia. AIP Adv. 2015;5: 127204.

    Google Scholar 

  80. Tao R, Huang K. Reducing blood viscosity with magnetic fields. Phys Rev E. 2011;84: 011905.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work via Grant Code: (22UQU4240002DSR14). The author (Alok Barman) gratefully acknowledges the funding of this research work by the University Grants Commission (UGC), India [Grant no.: Id.1245/(CSIRUGCNET2019)]. Also, we are thankful to the Editor and anonymous reviewers for their precious comments and suggestions in improving the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateh Mebarek-Oudina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A:

$$ X = - \frac{2\pi \alpha \beta \delta \cos 2\pi z}{{1 - 2\pi \alpha \beta \delta \cos 2\pi z}} - 1,{\kern 1pt} $$
$$ A_{1} = X + \frac{{a_{0} }}{{k^{4} }}(a_{2} + k^{2} )I_{0} (hk),{\kern 1pt} $$
$$ \begin{aligned} A_{2} = \frac{1}{256}\left[ {\frac{64}{{k^{2} }}a_{0} a_{2} I_{0} (hk) - a_{1} \left\{ { - 16h^{2} (a_{2} - a_{5} - 1) + a_{4} \left( {\frac{\text{d}p}{{\text{d}z}}} \right)^{2} h^{4} (1 + \lambda_{1} )^{2} + 64} \right\}} \right. \\ + \;\left. {a_{2}^{2} h^{2} \left\{ {3\frac{{\text{d}}p}{\text{d}z}h^{2} (1 + \lambda_{1} ) - 16(1 + X)} \right\} - 16a_{2} (a_{3} h^{2} - 4(1 + X)) + 64a_{3} } \right],{\kern 1pt} \\ \end{aligned} $$
$$ A_{3} = \frac{1}{256}\left[ {4a_{1} ( - a_{2} + a_{5} + 1) + a_{2} \left\{ { - a_{2} \frac{dp}{{dz}}h^{2} (1 + \lambda_{1} ) + 4a_{2} (X + 1) + 4a_{3} } \right\}} \right], $$
$$ A_{4} = \frac{1}{2304}(1 + \lambda_{1} )\frac{dp}{{dz}}\left\{ {a_{1} a_{4} \frac{dp}{{dz}}(1 + \lambda_{1} ) + a_{2}^{2} } \right\}, $$
$$ A_{5} = - \frac{{a_{0} }}{{k^{4} }}(a_{2} + k^{2} ),{\kern 1pt} $$
$$ A_{6} = - \frac{{a_{5} }}{4}, $$
$$ \begin{gathered} A_{7} = \frac{1}{{128}}a_{4} \frac{{\text{d}p}}{{\text{d}z}}(1 + \lambda _{1} )\left[ {4a_{1} + a_{2} \frac{{dp}}{{dz}}h^{2} (1 + \lambda _{1} ) - 4a_{2} (X + 1)} \right. \hfill \\ \left. {\quad \;\; + 2\left( { - 2a_{3} + \frac{{dp}}{{dz}}(1 + \lambda _{1} )} \right)} \right] \hfill \\ \end{gathered} $$
$$ A_{8} = - \frac{1}{576}a_{2} a_{4} \left( {\frac{\text{d}p}{\text{dz}}} \right)^{2} (1 + \lambda_{1} )^{2} , $$
$$ A_{9} = \frac{{a_{0} a_{4} }}{{k^{4} }}\frac{\text{d}p}{\text{dz}}(1 + \lambda_{1} ),{\kern 1pt} $$
$$ B_{1} = \frac{5}{3072}\pi a_{1} a_{4} h^{8} (1 + \lambda_{1} )^{2} , $$
$$ B_{2} = \frac{1}{{3072x_{1} }}\pi h^{4} (1 + \lambda_{1} )[a_{2} h^{2} (11a_{2} h^{2} x_{1} - 64) + 384], $$
$$ \begin{aligned} B_{3} = & \frac{1}{{8k^{5} }}\pi a_{0} h\;\left[ {hk\{ k^{2} (8 - a_{2} h^{2} ) + 8a_{2} \} I_{0} (hk)} \right. \\ & \left. { - 16(a_{2} + k^{2} )I_{1} (hk)} \right] \\ & \frac{1}{{48}}\pi h^{4} \{ a_{1} (h^{2} ( - a_{2} + a_{5} + 1) + 6) \\ & + a_{2} (X + 1)(a_{2} h^{2} - 6)\} + \pi h^{2} X - Q \\ \end{aligned} $$

Appendix B: Summary of Some important formulas:

(1) The constitutive formulas for the extra-stress tensor \(\tilde{S}\) in Jeffrey fluid model in component form are as:

$$ \tilde{S}_{{\tilde{\text{R}}\tilde{\text{R}}}} = \frac{{2\mu_{{{\text{hnf}}}} }}{{1 + \lambda_{1}^{ * } }}\left[ {1 + \lambda_{2} \left( {\tilde{U}\frac{\partial }{{\partial \tilde{R}}} + \tilde{W}\frac{\partial }{{\partial \tilde{Z}}}} \right)} \right]\frac{{\partial \tilde{U}}}{{\partial \tilde{R}}}, $$
$$ \tilde{S}_{{\tilde{\text{R}}\tilde{\text{Z}}}} = \tilde{S}_{{\tilde{\text{Z}}\tilde{\text{R}}}} = \frac{{\mu_{{{\text{hnf}}}} }}{{1 + \lambda_{1}^{ * } }}\left[ {1 + \lambda_{2} \left( {\tilde{U}\frac{\partial }{{\partial \tilde{R}}} + \tilde{W}\frac{\partial }{{\partial \tilde{Z}}}} \right)} \right]\left( {\frac{{\partial \tilde{U}}}{{\partial \tilde{Z}}} + \frac{{\partial \tilde{W}}}{{\partial \tilde{R}}}} \right), $$
$$ \tilde{S}_{{\tilde{\theta }\tilde{\theta }}} = \frac{{2\mu_{{{\text{hnf}}}} }}{{1 + \lambda_{1}^{ * } }}\left[ {1 + \lambda_{2} \left( {\tilde{U}\frac{\partial }{{\partial \tilde{R}}} + \tilde{W}\frac{\partial }{{\partial \tilde{Z}}}} \right)} \right]\left( {\frac{{\tilde{U}}}{{\tilde{R}}}} \right), $$
$$ \tilde{S}_{{\tilde{\text{Z}}\tilde{\text{Z}}}} = \frac{{2\mu_{{{\text{hnf}}}} }}{{1 + \lambda_{1}^{ * } }}\left[ {1 + \lambda_{2} \left( {\tilde{U}\frac{\partial }{{\partial \tilde{R}}} + \tilde{W}\frac{\partial }{{\partial \tilde{Z}}}} \right)} \right]\frac{{\partial \tilde{W}}}{{\partial \tilde{Z}}}, $$

(2) The electric potential \(\tilde{\Phi }\) across the EDL is expressed as follows [15, 70]:

$$ \nabla^{2} \tilde{\Phi } = - \frac{{\rho_{\text{e}} }}{{\varepsilon_{0} }}, $$

(3) In a unit volume of the ionic blood, the electric charge density is rewritten as:

$$ \rho_{{\text{e}}} = - 2n_{0} e\overline{z}\sinh \left( {\frac{{e\overline{z}\tilde{\Phi }}}{{K_{{\text{B}}} T_{{\text{a}}} }}} \right). $$

(4) The simplified Poisson–Boltzmann equation is as:

$$ \nabla^{2} \tilde{\Phi } = \frac{{2n_{0} e\overline{z}}}{{\varepsilon_{0} }}\sinh \left( {\frac{{e\overline{z}\tilde{\Phi }}}{{K_{{\text{B}}} T_{{\text{a}}} }}} \right), $$

(5) Debye–Hückel linearization approximation: When the thermal energy of the ions is greater than the electric potential energy, i.e.,\(\left| {e\overline{z}\tilde{\Phi }} \right| \ll \left| {K_{\text{B}} T_{\text{a}} } \right|\), then \(\left| {\frac{{e\overline{z}\tilde{\Phi }}}{{K_{{\text{B}}} T_{{\text{a}}} }}} \right| \ll 1\); accordingly \(\sinh \left( {\frac{{e\overline{z}\tilde{\Phi }}}{{K_{{\text{B}}} T_{{\text{a}}} }}} \right) \approx \frac{{e\overline{z}\tilde{\Phi }}}{{K_{{\text{B}}} T_{{\text{a}}} }}\).

(6) Adopting Debye–Hückel linearization approximation, Poisson–Boltzmann equation is:

$$ \frac{1}{{\tilde{R}}}\frac{\partial }{\partial }\left( {\tilde{R}\frac{{\partial \tilde{\Phi }}}{{\partial \tilde{R}}}} \right) + \frac{{\partial^{2} \tilde{\Phi }}}{{\partial \tilde{Z}^{2} }} = \frac{1}{{\lambda_{{\text{D}}}^{2} }}\tilde{\Phi }. $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Mebarek-Oudina, F., Barman, A. et al. Peristaltic transportation of hybrid nano-blood through a ciliated micro-vessel subject to heat source and Lorentz force. J Therm Anal Calorim 148, 7059–7083 (2023). https://doi.org/10.1007/s10973-023-12217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12217-x

Keywords

Navigation