Log in

The outcomes of Zn do** on the properties of CuO thin films prepared via modified SILAR method and its impact on the performance of CuO-based solar cells using Cd0.4Zn0.6S-ETL and Spiro-OMeTAD-HTL

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Do** is a highly effective tool for modifying the properties of semiconductor thin films. This study quantitatively examines the effect of zinc (Zn) do** on the physical properties of copper oxide (CuO) thin films prepared using a modified SILAR method. The crystalline structure, morphology and optical properties of the obtained samples were further characterized using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and UV–visible spectrometry. XRD analysis confirmed the inclusion of Zn into the CuO crystal lattice without altering its monoclinic structure, and no secondary phases such as Cu\(_{2}\)O, Cu(OH)\(_{2}\), or ZnO were detected, indicating high-quality films. SEM images reveal that surfaces are uniformly coated, dense and compact with uniform distribution of grains. EDX spectrum and map** analysis verified the incorporation of Zn atoms into CuO thin films. In addition, the UV–Visible spectroscopy a significantly indicated an increase in transmission and enhanced the bandgap from 1.47 to 1.55 eV with an increase in Zn concentration. The impact of Zn do** on the refractive index and the Urbach energy of CuO nanostructures has been investigated. Zn do** improved the optical properties of the films without trading off the tenorite phase of CuO thin films making them suitable in solar cells applications. Additionally, the impact of Zn-doped CuO on solar cell performance was investigated using the SCAPS-1D program. A novel heterostructure (ITO/Cd\(_{0.4}\)Zn\(_{0.6}\)S/Zn:CuO/Spiro-PMeTAD/Au) designed for CuO-based solar cells was analysed. Firstly, Cd\(_{1-x}\)Zn\(_{x}\)S was investigated as a factor affecting the performance of undoped CuO solar cells. Simulation results demonstrated that increasing Zn do** in CuO enhances solar cell efficiency. Finally, the proposed heterostructure design exhibits promising advancements, highlighting the potential for enhancing solar cell efficiency through targeted material do** and precise heterostructure engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Zakutayev, Brief review of emerging photovoltaic absorbers. Curr. Opin. Green Sustain. Chem. 4, 8–15 (2017). https://doi.org/10.1016/j.cogsc.2017.01.002. (4 Novel materials for energy production and storage 2017)

    Article  Google Scholar 

  2. S. Chowdhury, G. Chavan, S. Kim, D. Oh, Y. Kim, E. Chel Cho, Y. Cho, J. Yi, Analysis of passivation property using thin Al\(_{2}\)O\(_{3}\) layer and simulation for realization of high-efficiency TOPCon cell. Infrared Phys. Technol. 110, 103436 (2020). https://doi.org/10.1016/j.infrared.2020.103436

    Article  CAS  Google Scholar 

  3. M. Kim, N. Ahsan, Z. Jehl, Y. Snchez, Y. Okada, Properties of sputter-grown CuGaS\(_{2}\) absorber and CuGaS\(_{2}\)/Cd\(_{1-x}\)Zn\(_{x}\)S buffer heterointerface for solar cell application. Thin Solid Films 743, 139063 (2022). https://doi.org/10.1016/j.tsf.2021.139063

    Article  CAS  Google Scholar 

  4. A. Haddout, M. Fahoume, A. Raidou, M. Lharch, Numerical modeling of ZnSnO/CZTS based solar cells. Optoelectron. Lett. 18, 276–282 (2022). https://doi.org/10.1007/s11801-022-1144-4

    Article  Google Scholar 

  5. Z. Tan, Y. Xue, H. Dai, L. Wang, X. Hu, X. Bai, Tuning the band gap of the CIGS solar buffer layer Cd\(_{1-x}\)Zn\(_{x}\)S (x = 0–1) to achieve high efficiency. Optoelectron. Lett. 20(2), 100–106 (2024). https://doi.org/10.1007/s11801-024-2222-6

    Article  Google Scholar 

  6. M.S. Islam, M.J. Rashid, M. Akhtaruzzaman, S. Takashi, J. Kazmi, M.R. Karim, I.A. Alnaser, K. Sobayel, Exploration of cd\(_{1-x}\)zn\(_{x}\)se as a window layer for cigs based solar cell with PEDOT: PSS as back surface field layer. Materials Research Express 10(12), 126405 (2024). https://doi.org/10.1088/2053-1591/ad17ee

    Article  Google Scholar 

  7. I. Tomohiro, B. Ergashev, Y. Kawano, A. Mavlonov, S.A. Pawar, T. Minemoto, Influence of Mg concentration in Zn\(_{1-x}\)Mg\(_{x}\)O buffer layers for enhanced Cu2(Sn, Ge)S3 solar cells performance. Opt. Mater. 150, 115211 (2024). https://doi.org/10.1016/j.optmat.2024.115211

    Article  CAS  Google Scholar 

  8. H. Abdullah, K.J. **an, M.N.A. Hamzah, N.M. Naim, B. Bais, A.R. Mohmad, J. Sampe, B. Yuliarto, M.H.D. Othman, Y.W. Fen, N.L.W. Septiani, Investigating the potential of cobalt-doped zinc oxide (\(Zn_{1-x}Co_{x}O_{\delta }\)) as a buffer layer for CZTS thin-film solar cells. J. Mater. Sci. Mater. Electron. 35(16), 1087 (2024). https://doi.org/10.1007/s10854-024-12851-7

    Article  CAS  Google Scholar 

  9. D. Liu, D. Han, M. Huang, X. Zhang, T. Zhang, C. Dai, S. Chen, Theoretical study on the kesterite solar cells based on Cu\(_{2}\)ZnSn(S, Se)\(_{4}\) and related photovoltaic semiconductors. Chin. Phys. B 27, 018806 (2018). https://doi.org/10.1088/1674-1056/27/1/018806

    Article  CAS  Google Scholar 

  10. Y. Kim, H. Hempel, T. Unold, D.B. Mitzi, Ag Alloying in Cu\(_{2-y}\)Ag\(_{y}\)Ba(Ge, Sn)Se\(_{4}\) Films and Photovoltaic Devices. Solar RRL 7(7), 2201058 (2023). https://doi.org/10.1002/solr.202201058

    Article  CAS  Google Scholar 

  11. G. Chavan, S. Pawar, V. Prakshale, S. Pawar, S. Ezugwu, N. Chaure, S. Kamble, N. Maldar, L. Deshmukh, Direct synthesis of quaternary Cd(Zn, S)Se thin films: effects of composition. Mater. Sci. Semicond. Process. 71, 447–453 (2017). https://doi.org/10.1016/j.mssp.2017.09.005

    Article  CAS  Google Scholar 

  12. G.T. Chavan, V.M. Prakshale, S.S. Kamble, S.T. Pawar, A. Sikora, E.-C. Cho, J. Yi, L.P. Deshmukh, Cd(Zn, S)Se quaternary thin films for electrochemical photovoltaic cell application. Int. J. Energy Res. 44(5), 3737–3748 (2020). https://doi.org/10.1002/er.5162

    Article  CAS  Google Scholar 

  13. G. Chavan, F. Sabah, S. Kamble, V. Prakshale, S. Pawar, S. Patil, S. Lee, A. Sikora, L. Deshmukh, Y. Cho, E.-C. Cho, J. Yi, Novel synthesis method for quaternary Cd(Cu, Zn)Se thin films and its characterizations. Ceram. Int. 46(1), 74–80 (2020). https://doi.org/10.1016/j.ceramint.2019.08.235

    Article  CAS  Google Scholar 

  14. G. Chavan, N.M. Shinde, F. Sabah, S.S. Patil, A. Sikora, V. Prakshale, S. Kamble, N. Chaure, L. Deshmukh, A. Kim, C.-W. Jeon, Chemical synthesis of Cd\(_{1-x-y}\)ZnxCu\(_{y}\)S\(_{z}\)Se\(_{1-z}\) composite thin films for photoelectrochemical solar cell. Appl. Surf. Sci. 574, 151581 (2022). https://doi.org/10.1016/j.apsusc.2021.151581

    Article  CAS  Google Scholar 

  15. T.K.S. Wong, S. Zhuk, S. Masudy-Panah, G.K. Dalapati, Current status and future prospects of copper oxide heterojunction solar cells. Materials (2016). https://doi.org/10.3390/ma9040271

    Article  PubMed  PubMed Central  Google Scholar 

  16. J. Zhang, G. **ang, Y. Liu, J. Zhang, W. Peng, Y. Zhou, Z. Yue, X. Zhang, C. Song, Y. **, P. Wang, H. Wang, Y. Zhao, Preparation of CuO films at different sputtering powers and the effect of operating temperatures on the photovoltaic characteristics of p-CuO/n-Si heterojunction. Vacuum 209, 111769 (2023). https://doi.org/10.1016/j.vacuum.2022.111769

    Article  CAS  Google Scholar 

  17. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–337 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.003

    Article  CAS  Google Scholar 

  18. C. Jayathilaka, V. Kapaklis, W. Siripala, S. Jayanetti, Improved efficiency of electrodeposited p-CuO/n-Cu\(_{2}\)O heterojunction solar cell. Appl. Phys. Express 8(6), 065503 (2015). https://doi.org/10.7567/APEX.8.065503

    Article  CAS  Google Scholar 

  19. A.H.O. Alkhayatt, M.D. Jaafer, H.H.A. Al Alak, A.H. Ali, Characterization of CuO/n-Si pn junction synthesized by successive ionic layer adsorption and reaction method. Opt. Quantum Electron. 51(7), 233 (2019). https://doi.org/10.1007/s11082-019-1951-4

    Article  CAS  Google Scholar 

  20. H. Cavusoglu, R. Aydin, Complexing agent triethanolamine mediated synthesis of nanocrystalline CuO thin films at room temperature via SILAR technique. Superlattices Microstruct. 128, 37–47 (2019). https://doi.org/10.1016/j.spmi.2019.01.011

    Article  CAS  Google Scholar 

  21. O. Kahveci, A. Akkaya, R. Aydın, B. Şahin, E. Ayyıdız, Synthesis of Al and In dual-doped CuO nanostructures via SILAR method: structural, optical and electrical properties. Inorg. Chem. Commun. 147, 110230 (2023). https://doi.org/10.1016/j.inoche.2022.110230

    Article  CAS  Google Scholar 

  22. W. Shockley, H. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32 (1961)

  23. S. Sonia, I. Jose Annsi, P. Suresh Kumar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Hydrothermal synthesis of novel Zn doped CuO nanoflowers as an efficient photodegradation material for textile dyes. Mater. Lett. 144, 127–130 (2015). https://doi.org/10.1016/j.matlet.2015.01.026

    Article  CAS  Google Scholar 

  24. L. Vimala Devi, S. Sellaiyan, T. Selvalakshmi, H. Zhang, A. Uedono, K. Sivaji, S. Sankar, Synthesis, defect characterization and photocatalytic degradation efficiency of Tb doped CuO nanoparticles. Adv. Powder Technol. 28(11), 3026–3038 (2017). https://doi.org/10.1016/j.apt.2017.09.013

    Article  CAS  Google Scholar 

  25. J. Sultana, S. Paul, A. Karmakar, R. Yi, G.K. Dalapati, S. Chattopadhyay, Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: impact of growth time. Appl. Surf. Sci. 418(Part A), 380–387 (2017). https://doi.org/10.1016/j.apsusc.2016.12.139

    Article  CAS  Google Scholar 

  26. O. Daoudi, I. Jellal, A. Haddout, J. Zimou, O. EL Khouja, K. Nouneh, M. Lharch, M. Fahoume, A. Bendoumou, Unravelling the role of nickel incorporation on the physical properties of CuO thin films deposited by spray pyrolysis and theoretical analysis of nanostructured ZnO/Ni:CuO-based heterojunction solar cells. J. Mater. Sci.: Mater. Electron. 34(9), 819 (2023). https://doi.org/10.1007/s10854-023-10167-6

    Article  CAS  Google Scholar 

  27. H.M. Hussein, Fabricating and synthesizing spin coated CuO thin film as absorber layer in optoelectronic applications. Prot. Met. Phys. Chem. Surf. 59(3), 422–427 (2023). https://doi.org/10.1134/S2070205123700491

    Article  Google Scholar 

  28. G. Welegergs, Z. Mehabaw, H. Gebretinsae, M. Tsegay, L. Kotsedi, Z. Khumalo, N. Matinisie, Z. Aytuna, S. Mathur, Z. Nuru, S. Dube, M. Maaza, Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: structural, optical and electrical properties. Infrared Phys. Technol. 133, 104820 (2023). https://doi.org/10.1016/j.infrared.2023.104820

    Article  CAS  Google Scholar 

  29. O. Daoudi, Y. Qachaou, A. Raidou, K. Nouneh, M. Lharch, M. Fahoume, Study of the physical properties of CuO thin films grown by modified SILAR method for solar cells applications. Superlattices Microstruct. 127, 93–99 (2019). https://doi.org/10.1016/j.spmi.2018.03.006. (Materials Science for Green Energy Ifran City)

    Article  CAS  Google Scholar 

  30. O. Daoudi, A. Elmadani, M. Lharch, M. Fahoume, A new efficient synthesis of CuO thin films using modified SILAR method. Opt. Quantum Electron. 52(9), 413 (2020). https://doi.org/10.1007/s11082-020-02530-2

    Article  CAS  Google Scholar 

  31. A.S. Patil, G.M. Lohar, V.J. Fulari, Structural, morphological, optical and photoelectrochemical cell properties of copper oxide using modified SILAR method. J. Mater. Sci. Mater. Electron. 27(9), 9550–9557 (2016). https://doi.org/10.1007/s10854-016-5007-2

    Article  CAS  Google Scholar 

  32. A. Bagde, D. Malavekar, D. Pawar, S. Khot, C. Lokhande, Pseudocapacitive performance of amorphous ruthenium oxide deposited by successive ionic layer adsorption and reaction (SILAR): Effect of thickness. J. Phys. Chem. Solids 179, 111386 (2023). https://doi.org/10.1016/j.jpcs.2023.111386

    Article  CAS  Google Scholar 

  33. N.J. Karazmoudeh, M. Soltanieh, M. Hasheminiasari, Structural and photocatalytic properties of undoped and Zn-doped CuO thin films deposited by reactive magnetron sputtering. J. Alloy. Compd. 947, 169564 (2023). https://doi.org/10.1016/j.jallcom.2023.169564

    Article  CAS  Google Scholar 

  34. A. Prakash, M. Mahesha, Harnessing the tunability of intrinsic defects in isovalent Zn doped spray deposited CuO thin films. Mater. Chem. Phys. 309, 128443 (2023). https://doi.org/10.1016/j.matchemphys.2023.128443

    Article  CAS  Google Scholar 

  35. D. Naveena, T. Logu, K. Sethuraman, A.C. Bose, Significant enhancement of photo-physicochemical properties of Yb doped copper oxide thin films for efficient solid-state solar cell. J. Alloy. Compd. 795, 187–196 (2019). https://doi.org/10.1016/j.jallcom.2019.04.233

    Article  CAS  Google Scholar 

  36. D. Naveena, R. Dhanabal, A. Chandra Bose, Investigating the effect of La doped CuO thin film as absorber material for solar cell application. Opt. Mater. 127, 112266 (2022). https://doi.org/10.1016/j.optmat.2022.112266

    Article  CAS  Google Scholar 

  37. V. Jagadeesan, V. Subramaniam, Comparison studies of Zn-doped CuO thin films deposited by manual and automated nebulizer-spray pyrolysis systems and their application in heterojunction-diode fabrication. J. Sol-Gel. Sci. Technol. 102(3), 614–627 (2022). https://doi.org/10.1007/s10971-021-05624-9

    Article  CAS  Google Scholar 

  38. A. Bhattacharya, S. Kanungo, N. Bahadursha, G.K. Dalapati, S. Ramakrishna, S. Chattopadhyay, Investigating the opto-electronic and photovoltaic properties of Zn-incorporated CuO thin film grown by vapor-liquid-solid (VLS) method. J. Mater. Sci. Mater. Electron. 35(2), 171 (2024). https://doi.org/10.1007/s10854-023-11905-6

    Article  CAS  Google Scholar 

  39. A. Kathalingam, K. Kesavan, V. Mary Pradeepa, H.-S. Kim, Fabrication and characterization of CuO/CdS heterostructure for optoelectronic applications. J. Sol-Gel. Sci. Technol. 96, 178–187 (2020). https://doi.org/10.1007/s10971-020-05391-z

    Article  CAS  Google Scholar 

  40. L. Chabane, N. Zebbar, M.L. Zeggar, M. Aida, M. Kechouane, M. Trari, Effects of CuO film thickness on electrical properties of CuO/ZnO and CuO/ZnS hetero-junctions. Mater. Sci. Semicond. Process. 40, 840–847 (2015). https://doi.org/10.1016/j.mssp.2015.07.080

    Article  CAS  Google Scholar 

  41. P.U. Londhe, A.B. Rohom, G.R. Bhand, S. Jadhav, M.G. Lakhe, N.B. Chaure, Effect of complexing agent on the chemically deposited ZnS thin film. J. Mater. Sci. Mater. Electron. 28(7), 5207–5214 (2017). https://doi.org/10.1007/s10854-016-6177-7

    Article  CAS  Google Scholar 

  42. S.V. Mukhamale, N. Chaure, Synthesis and characterization of ZnS thin films deposited by CBD and UCBD techniques. AIP Conf. Proc. 1512, 388–389 (2013). https://doi.org/10.1063/1.4791074

    Article  CAS  Google Scholar 

  43. O.O. Olasanmi, M. Anthony, Variation of ZnS deposition time on chemically prepared Cd\(_{1-x}\)Zn\(_{x}\)S ternary compound from CdS/ZnS bilayers. Results Opt. 11, 100419 (2023). https://doi.org/10.1016/j.rio.2023.100419

    Article  Google Scholar 

  44. J.-H. Lee, W.-C. Song, J.-S. Yi, K.-J. Yang, W.-D. Han, J. Hwang, Growth and properties of the Cd\(_{1-x}\)Zn\(_{x}\)S thin films for solar cell applications. Thin Solid Films 431–432, 349–353 (2003). https://doi.org/10.1016/S0040-6090(03)00526-1

    Article  CAS  Google Scholar 

  45. M.M. Hoque, M.A. Zubair, R.N. Sajjad, Formation of wide-bandgap, highly transparent and compact Cd\(_{1-x}\)Zn\(_{x}\)S films with dynamically controlled pH in chemical bath deposition. J. Mater. Chem. C 11, 6360–6375 (2023). https://doi.org/10.1039/D3TC00450C

    Article  CAS  Google Scholar 

  46. R.N. Bhattacharya, 19.52%-Efficient CIGS photovoltaic cells using a Cd-Zn-S buffer layer. ECS Trans. 13(17), 173 (2008). https://doi.org/10.1149/1.3039774

    Article  CAS  Google Scholar 

  47. M. Burgelman, K. Decock, S. Khelifi, A. Abass, Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296–301 (2013). https://doi.org/10.1016/j.tsf.2012.10.032

    Article  CAS  Google Scholar 

  48. X. Yu, X. Zou, J. Cheng, C. Chang, Z. Zhou, G. Li, B. Liu, J. Wang, D. Chen, Y. Yao, Numerical simulation analysis of effect of energy band alignment and functional layer thickness on the performance for perovskite solar cells with CdZn\(_{1-x}\)Zn\(_{x}\)S electron transport layer. Mater. Res. Express 7(10), 105906 (2020). https://doi.org/10.1088/2053-1591/abbf12

    Article  CAS  Google Scholar 

  49. P. Tiwari, M.F. Alotaibi, Y. Al-Hadeethi, V. Srivastava, B. Arkook, Sadanand, P. Lohia, D.K. Dwivedi, A. Umar, H. Algadi, S. Baskoutas, Design and simulation of efficient SnS-based solar cell using Spiro-OMeTAD as hole transport layer. Nanomaterials (2022). https://doi.org/10.3390/nano12142506

  50. L. Zhu, G. Shao, J.K. Luo, Numerical study of metal oxide hetero-junction solar cells with defects and interface states. Semicond. Sci. Technol. 28(5), 055004 (2013). https://doi.org/10.1088/0268-1242/28/5/055004

    Article  CAS  Google Scholar 

  51. P. Kumar, M. Chandra Mathpal, J. Prakash, B.C. Viljoen, W. Roos, H. Swart, Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn do** for antibacterial applications. J. Alloy. Compd. 832, 154968 (2020). https://doi.org/10.1016/j.jallcom.2020.154968

    Article  CAS  Google Scholar 

  52. E. Bruno, M. Haris, A. Mohan, M. Senthilkumar, Formation of self-assembled hierarchical structure on Zn doped in CuO nanoparticle using a microwave-assisted chemical precipitation approach. J. Mater. Sci. Mater. Electron. 32(14), 19339–19351 (2021). https://doi.org/10.1007/s10854-021-06452-x

    Article  CAS  Google Scholar 

  53. T. Jiang, Y. Wang, D. Meng, D. Wang, One-step hydrothermal synthesis and enhanced photocatalytic performance of pine-needle-like Zn-doped CuO nanostructures. J. Mater. Sci. Mater. Electron. 27(12), 12884–12890 (2016). https://doi.org/10.1007/s10854-016-5424-2

    Article  CAS  Google Scholar 

  54. P. Kumar, G.K. Inwati, M.C. Mathpal, S. Ghosh, W. Roos, H. Swart, Defects induced enhancement of antifungal activities of Zn doped CuO nanostructures. Appl. Surf. Sci. 560, 150026 (2021). https://doi.org/10.1016/j.apsusc.2021.150026

    Article  CAS  Google Scholar 

  55. I. Jellal, O. Daoudi, K. Nouneh, M. Boutamart, S. Briche, G. Plantard, M. Fahoume, J. Naja, Successive ionic layer adsorption and reaction (SILAR) synthesis of micro-structured Cu-doped ZnO thin films with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 34(7), 672 (2023). https://doi.org/10.1007/s10854-023-10057-x

    Article  CAS  Google Scholar 

  56. M.A. Dar, D. Govindarajan, K.M. Batoo, C. Siva, Supercapacitor and magnetic properties of Fe doped SnS nanoparticles synthesized through solvothermal method. J. Energy Storage 52, 105034 (2022). https://doi.org/10.1016/j.est.2022.105034

    Article  Google Scholar 

  57. H. Çavuşoğlu, Evaluating the influence of polyethylene glycol as a surfactant on CdO films grown by SILAR method. J. Phys. Chem. Solids 124, 67–72 (2019). https://doi.org/10.1016/j.jpcs.2018.08.034

    Article  CAS  Google Scholar 

  58. O. Daoudi, Y. Qachaou, A. Raidou, K. Nouneh, M. Lharch, M. Fahoume, Study of the physical properties of CuO thin films grown by modified SILAR method for solar cells applications. Superlattices Microstruct. 127, 93–99 (2019). https://doi.org/10.1016/j.spmi.2018.03.006

    Article  CAS  Google Scholar 

  59. R. Dash, M. Gurjar, N. Kumari, T. Harsh, A.S. Bhattacharyya, Preferential growth and effect of temperature in (Ni, Zn) co-doped CuO. MRS Adv. (2023). https://doi.org/10.1557/s43580-023-00643-w

    Article  Google Scholar 

  60. M. Jamal, M.M. Billah, S.A. Ayon, Opto-structural and magnetic properties of fluorine doped CuO nanoparticles: an experimental study. Ceram. Int. 49(6), 10107–10118 (2023). https://doi.org/10.1016/j.ceramint.2022.11.194

    Article  CAS  Google Scholar 

  61. L. Arun, C. Karthikeyan, D. Philip, M. Sasikumar, E. Elanthamilan, J.P. Merlin, C. Unni, Effect of Ni\(^{2+}\) do** on chemocatalytic and supercapacitor performance of biosynthesized nanostructured CuO. J. Mater. Sci. Mater. Electron. 29(24), 21180–21193 (2018). https://doi.org/10.1007/s10854-018-0268-6

    Article  CAS  Google Scholar 

  62. N. Mohamed Basith, J. Judith Vijaya, L. John Kennedy, M. Bououdina, Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Phys. E Low-Dimensional Syst. Nanostructures 53, 193–199 (2013). https://doi.org/10.1016/j.physe.2013.05.009

    Article  CAS  Google Scholar 

  63. O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. J. Alloy. Compd. 576, 72–79 (2013). https://doi.org/10.1016/j.jallcom.2013.04.133

    Article  CAS  Google Scholar 

  64. L.V. Devi, S. Sellaiyan, S. Sankar, K. Sivaji, Structural and optical investigation of combustion derived La doped copper oxide nanocrystallites. Mater. Res. Express 5(2), 024002 (2018). https://doi.org/10.1088/2053-1591/aaa7a3

    Article  CAS  Google Scholar 

  65. R. Leelavati, R. Kumar, Kumar, Structural and optical studies of Mn\(^{2+}\) substituted CdO nano-particles. Appl. Phys. A 127(4), 249 (2021). https://doi.org/10.1007/s00339-021-04390-3

    Article  CAS  Google Scholar 

  66. G. Ramalingam, P. Kathirgamanathan, G. Ravi, T. Elangovan, N. Manivannan, K. Kasinathan, et al., Quantum confinement effect of 2D nanomaterials, in Quantum Dots-Fundamental and Applications (IntechOpen, 2020)

  67. B. Bayansal Fatİh, M. Yüksel, Preparation and characterization of Zn\(_{1-x}\)Cu(\(_{x}\))O composite films on glass substrates through SILAR processing. Metall. Mater. Trans. A. 46(7), 3302–3307 (2015). https://doi.org/10.1007/s11661-015-2887-3

    Article  CAS  Google Scholar 

  68. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, Zinc concentration effect on structural, optical and electrical properties of Cd\(_{1-x}\)Zn\(_{x}\)Se thin films. Mater. Res. Bull. 47(11), 3390–3396 (2012). https://doi.org/10.1016/j.materresbull.2012.07.018

    Article  CAS  Google Scholar 

  69. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  70. A. Haddout, A. Raidou, M. Fahoume, A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 125(2), 124 (2019). https://doi.org/10.1007/s00339-019-2413-3

    Article  CAS  Google Scholar 

  71. S. Borse, S. Chavhan, R. Sharma, Growth, structural and optical properties of Cd\(_{1-x}\)Zn\(_{x}\)S alloy thin films grown by solution growth technique (SGT). J. Alloy. Compd. 436(1–2), 407–414 (2007). https://doi.org/10.1016/j.jallcom.2006.11.009

    Article  CAS  Google Scholar 

  72. H. Shiel, O.S. Hutter, L.J. Phillips, J.E.N. Swallow, L.A.H. Jones, T.J. Featherstone, M.J. Smiles, P.K. Thakur, T.-L. Lee, V.R. Dhanak, J.D. Major, T.D. Veal, Natural band alignments and band offsets of Sb\(_{2}\)Se\(_{3}\) solar cells. ACS Appl. Energy Mater. 3(12), 11617–11626 (2020). https://doi.org/10.1021/acsaem.0c01477

    Article  CAS  Google Scholar 

  73. W. Septina, R.R. Prabhakar, R. Wick, T. Moehl, S.D. Tilley, Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes. Chem. Mater. 29(4), 1735–1743 (2017). https://doi.org/10.1021/acs.chemmater.6b05248

    Article  CAS  Google Scholar 

  74. S. Dolai, R. Dey, S. Hussain, R. Bhar, A. Kumar Pal, Photovoltaic properties of F:SnO\(_{2}\)/CdS/CuO/Ag heterojunction solar cell. Mater. Res. Bull. 109, 1–9 (2019). https://doi.org/10.1016/j.materresbull.2018.09.022

    Article  CAS  Google Scholar 

  75. F.A. Jhuma, M.Z. Shaily, M.J. Rashid, Towards high-efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8, 1–7 (2019). https://doi.org/10.1007/s40243-019-0144-1

    Article  Google Scholar 

  76. F. Ayala-Mató, O. Vigil-Galán, D. Seuret-Jiménez, M. Courel, S. Fernández, Evaluation of \(CdZn_{1-x}Zn_{x}\)S as electron transport layer in superstrate and inverted configurations of Sb\(_{2}\)Se\(_{3}\) solar cells with n-i-p structure. Semicond. Sci. Technol. 36(1), 015016 (2020). https://doi.org/10.1088/1361-6641/abc7d0

    Article  CAS  Google Scholar 

  77. G. Kartopu, A.J. Clayton, W.S. Brooks, S.D. Hodgson, V. Barrioz, A. Maertens, D.A. Lamb, S.J. Irvine, Effect of window layer composition in Cd\(_{0.4}\)Zn\(_{0.6}\)S/CdTe solar cells. Prog. Photovoltaics Res. Appl. 22(1), 18–23 (2014). https://doi.org/10.1002/pip.2272

    Article  CAS  Google Scholar 

  78. A. Haddout, M. Fahoume, A. Raidou, M. Lharch, Numerical modeling of znsno/czts based solar cells. Optoelectron. Lett. 18(5), 276–282 (2022). https://doi.org/10.1007/s11801-022-1144-4

    Article  Google Scholar 

  79. A. Haddout, M. Fahoume, A. Qachaou, A. Raidou, M. Lharch, Understanding effects of defects in bulk Cu\(_{2}\)ZnSnS\(_{4}\) absorber layer of kesterite solar cells. Sol. Energy 211, 301–311 (2020). https://doi.org/10.1016/j.solener.2020.09.067

    Article  CAS  Google Scholar 

  80. P. Sawicka-Chudy, Z. Starowicz, G. Wisz, R. Yavorskyi, Z. Zapukhlyak, M. Bester, Ł Głowa, M. Sibiski, M. Cholewa, Simulation of TiO\(_{2}\)/CuO solar cells with SCAPS-1D software. Mater. Res. Express 6(8), 085918 (2019). https://doi.org/10.1088/2053-1591/ab22aa

    Article  CAS  Google Scholar 

  81. M. Patel, A. Ray, Enhancement of output performance of Cu\(_{2}\)ZnSnS\(_{4}\) thin film solar cells—a numerical simulation approach and comparison to experiments. Phys. B Condens. Matter 407(21), 4391–4397 (2012). https://doi.org/10.1016/j.physb.2012.07.042

    Article  CAS  Google Scholar 

  82. L. Nakka, Y. Cheng, A.G. Aberle, F. Lin, Analytical review of Spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells. Adv. Energy Sustain. Res. 3(8), 2200045 (2022). https://doi.org/10.1002/aesr.202200045

    Article  CAS  Google Scholar 

  83. M. Nicolás-Marín, F. Ayala-Mato, O. Vigil-Galán, M. Courel, Simulation analysis of Cd\(_{1-x}\)Zn\(_{x}\)S/Sb2(Se1-xSx)3 solar cells with n-i-p structure. Sol. Energy 224, 245–252 (2021). https://doi.org/10.1016/j.solener.2021.05.092

    Article  CAS  Google Scholar 

  84. L. **ao, G. Wang, J. Yao, Enhanced hole extraction in green energy perovskite solar cell by CuO\(_{x}\)/spiro-OMeTAD bilayer with improved performance. IOP Conf. Ser. Earth Environ. Sci. 804(3), 032062 (2021). https://doi.org/10.1088/1755-1315/804/3/032062

    Article  Google Scholar 

  85. S. Ahmmed, A. Aktar, S. Tabassum, M.H. Rahman, M.F. Rahman, A.BMd. Ismail, CuO based solar cell with V\(_{2}\)O\(_{5}\) BSF layer: theoretical validation of experimental data. Superlattices Microstruct. 151, 106830 (2021). https://doi.org/10.1016/j.spmi.2021.106830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Marc Burgelman and their team from Gunt University Belgium for develo** the SCAPS-1D simulation software.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation and characterization of this study. All authors have commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Othmane Daoudi.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 88 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoudi, O., Jellal, I., Haddout, A. et al. The outcomes of Zn do** on the properties of CuO thin films prepared via modified SILAR method and its impact on the performance of CuO-based solar cells using Cd0.4Zn0.6S-ETL and Spiro-OMeTAD-HTL. J Mater Sci: Mater Electron 35, 1353 (2024). https://doi.org/10.1007/s10854-024-13094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13094-2

Navigation