Log in

Tuning the band gap of the CIGS solar buffer layer Cd1−xZnxS (x=0–1) to achieve high efficiency

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

To evaluate the impact of zinc sulfate (ZnSO4) concentration on the structural properties of the films, Cd1−xZnxS thin films were formed on glass substrates using chemical bath deposition (CBD) in this study. The effect of ZnSO4 precursor concentration on the surface morphology, optical properties, and morphological structure of the Cd1−xZnxS films was investigated. To study the impact of zinc do** content on the performance metrics of Cu(In1−xGax)Se2 (CIGS) cells in the experimental group and to improve the buffer layer thickness, simulations were run using one-dimensional solar cell capacitance simulator (SCAPS-1D) software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABZA T, AMPONG F K, HONE F G, et al. Preparation of cadmiumzinc sulfide (Cd1−xZnxS) thin films from acidic chemical baths[J]. Thin solid films, 2018, 666: 28.

    Article  ADS  Google Scholar 

  2. BARMAN B, BANGERA K V, SHIVAKUMAR G K. A comprehensive study on the structural, morphological, compositional and optical properties of ZnxCd1−xS thin films[J]. Materials research express, 2020, 6(12): 126441–126441.

    Article  Google Scholar 

  3. ZELLAGUI R, DEHDOUH H, ADNANE M, et al. CdxZn1−xS thin films deposited by chemical bath deposition (CBD) method[J]. Optik, 2020, 207: 164377.

    Article  ADS  Google Scholar 

  4. PUROHIT A, PATEL S L, CHANDER S, et al. Substrate evolution to microstructural and optoelectrical properties of evaporated CdS thin films correlated with elemental composition[J]. Acta metallurgica sinica (English letters), 2021, 34(9): 1307–1316.

    Article  Google Scholar 

  5. XUE Y, ZHANG S, SONG D, et al. Effect of concentration of cadmium sulfate solution on structural, optical and electric properties of Cd1−xZnxS thin films[J]. Journal of semiconductors, 2021, 42(11): 112101.

    Article  ADS  Google Scholar 

  6. XIE X, XUE Y, LV C, et al. Tuning zinc do** content to optimize optical and structural properties of Cd1−xZnxS buffer layers[J]. Optoelectronics letters, 2023, 19(1): 25–30.

    Article  ADS  Google Scholar 

  7. ZELLAGUI R. CdxZn1−xS thin films deposited by chemical bath deposition (CBD) method[J]. Optik, 2020, 207(C): 164377–164377.

    Article  ADS  Google Scholar 

  8. WANG L, XUE Y, WANG Z, et al. Effects of ammonia concentration on morphology, composition and optical properties of ZnO1−xSx thin films of Cu(In,Ga)Se2 solar cells[J]. Optoelectronics letters, 2022, 18(4): 215–221.

    Article  ADS  Google Scholar 

  9. MAHDI M A, HASSAN J J, HASSAN Z, et al. Growth and characterization of ZnxCd1−xS nanoflowers by microwave-assisted chemical bath deposition[J]. Journal of alloys and compounds, 2012, 541: 227–233.

    Article  Google Scholar 

  10. MUNNA F T, SELVANATHAN V, SOBAYEL K, et al. Diluted chemical bath deposition of CdZnS as prospective buffer layer in CIGS solar cell[J]. Ceramics international, 2021, 47: 11003–11009.

    Article  Google Scholar 

  11. ZHANG L M. Influence of ammonia concentration on the structural, composition and optical properties of CdZnS thin films[J]. Materials science in semiconductor processing, 2019, 104(C): 104650–104650.

    Article  Google Scholar 

  12. MUNNA F T. Effect of zinc do** on the optoelectronic properties of cadmium sulphide (CdS) thin films deposited by chemical bath deposition by utilizing an alternative sulphur precursor[J]. Optik, 2020, 218: 165197.

    Article  ADS  Google Scholar 

  13. SMAIRI S. Elaboration and characterization of cadmium sulfide (CdS) thin films prepared by chemical bath deposition (CBD)[J]. Materials today: proceedings, 2022, 66: 112–115.

    Google Scholar 

  14. ERTHRK K. Optical and structural characteristics of electrodeposited Cd1−xZnxS nanostructured thin films[J]. Optical materials, 2021, 114.

  15. JRAD A. Investigation of molybdenum dopant effect on ZnS thin films: chemical composition, structural, morphological, optical and luminescence surveys[J]. Materials science in semiconductor processing, 2021, 130: 105825.

    Article  Google Scholar 

  16. XUE Y M. Effect of concentration of cadmium sulfate solution on structural, optical and electric properties of Cd1−xZnxS thin films[J]. Journal of semiconductors, 2021, 42(11): 6.

    Article  Google Scholar 

  17. SOBAYEL K. A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation[J]. Results in physics, 2019, 12: 1097–1103.

    Article  ADS  Google Scholar 

  18. HOSSAIN T, SOBAYEL M K, MUNNA F T, et al. Tuning the bandgap of Cd1−xZnxS (x=0∼1) buffer layer and CIGS absorber layer for obtaining high efficiency[J]. Superlattices and microstructures, 2022, 161: 107100.

    Article  Google Scholar 

  19. ALBI A. Effects of temperature, thickness, electron density and defect density on ZnS based solar cells: SCAPS-1D simulation[J]. Materials today, 2022, 66: 116–121.

    Google Scholar 

  20. LI W. Numerical analysis of the back interface for high-efficiency wide band gap chalcopyrite solar cells[J]. Solar energy, 2019, 180: 207–215.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Xue.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the Science and Technology Innovation Development Program (No.70304901).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Xue, Y., Dai, H. et al. Tuning the band gap of the CIGS solar buffer layer Cd1−xZnxS (x=0–1) to achieve high efficiency. Optoelectron. Lett. 20, 100–106 (2024). https://doi.org/10.1007/s11801-024-2222-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-2222-6

Document code

Navigation