Log in

Synthesis and characterization of biocompatible ZnFe2O4 nanoparticles for magnetic particle imaging (MPI)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (MNPs) have significant interests in a wide range of medical applications, such as a tracer agent in magnetic particle imaging (MPI), contrast enhancement in magnetic resonance imaging (MRI), photothermal therapy treatment, and drug delivery systems. Zinc ferrites (ZnFe2O4) were synthesized by hydrothermal and co-precipitation methods. In this study, the effects of cap** agents on the structural morphology, and magnetic behaviors of ZnFe2O4 nanoparticles were evaluated for MPI applications. The Fourier transform infrared spectroscopy ensured the presence of cap** agents on the structures. The X-ray diffraction technique was used to characterize the structural properties of the synthesized samples. The crystallite size of single-phase cubic spinel zinc ferrite nanoparticles was maintained within 14–18 nm with the effect of cap** agents. All synthesized ZnFe2O4 nanoparticles evaluated with the physical properties measurement method (PPMS) that showed superparamagnetic behavior. The cap** agents polyacrylic acid, lauric acid, and malic acid played a significant role in the controllability of the nanoparticle size. A custom-designed magnetic particle relaxometer (MPR) at 9.9 kHz was used to evaluate the synthesized ZnFe2O4 for MPI applications. The MPR analysis of ZnFe2O4@PAA samples yielded the best results in terms of the shortest effective relaxation time (2.68 µs) and excellent spatial resolution (FWHM, 5.89 mT). The structural and magnetic characterizations of the zinc-based nanoparticles proved that they are suitable for MPI biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Gleich, J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)

    Article  CAS  Google Scholar 

  2. M.H. Pablico-Lansigan, S.F. Situ, A.C.S. Samia, Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5, 4040 (2013)

    Article  CAS  Google Scholar 

  3. K.M. Krishnan, Fundamentals and Applications of Magnetic Materials (Oxford University Press, Oxford, 2016)

    Book  Google Scholar 

  4. T. Knopp, T.M. Buzug, Magnetic Particle Imaging: A Novel SPIO Nanoparticle Imaging Technique (Springer, Berlin, 2012)

    Book  Google Scholar 

  5. P.W. Goodwill, E.U. Saritas, L.R. Croft, T.N. Kim, K.M. Krishnan, D.V. Schaffer, S.M. Conolly, X-Space MPI: magnetic nanoparticles for safe medical imaging. Adv. Mater. 24, 3870–3877 (2012)

    Article  CAS  Google Scholar 

  6. J. Weizenecker, J. Borgert, B. Gleich, A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys. Med. Biol. 52, 6363–6374 (2007)

    Article  CAS  Google Scholar 

  7. R. Hufschmid, J. Landers, C. Shasha, S. Salamon, H. Wende, K.M. Krishnan, Nanoscale physical and chemical structure of iron oxide nanoparticles for magnetic particle imaging. Phys. Status Solidi (A) 216, 1800544 (2019)

    Article  Google Scholar 

  8. Y. Li, N. Wang, X. Huang, F. Li, T.P. Davis, R. Qiao, D. Ling, Polymer-assisted magnetic nanoparticle assemblies for biomedical applications. ACS Appl. Bio Mater. 3, 121–142 (2020)

    Article  CAS  Google Scholar 

  9. S. Laurent, S. Boutry, R.N. Muller, Metal oxide particles and their prospects for applications, in Iron Oxide Nanoparticles for Biomedical Applications. ed. by S. Laurent (Elsevier, Amsterdam, 2018), pp.3–42

    Chapter  Google Scholar 

  10. K. Tanaka, A. Narita, N. Kitamura, W. Uchiyama, M. Morita, T. Inubushi, Y. Chujo, Preparation for highly sensitive MRI contrast agents using core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating. Langmuir 6, 11759–11762 (2010)

    Article  Google Scholar 

  11. S. Cheong, P. Ferguson, K.W. Feindel, F. Hermans, P.T. Callaghan et al., Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew. Chem. Int. Ed. 50, 4206–4209 (2011)

    Article  CAS  Google Scholar 

  12. M.M. Lin, D.K. Kim, A.J.E. Haj, J. Donson, Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans. Nanobiosci. 7(4), 298–305 (2008)

    Article  Google Scholar 

  13. Y. Huang, Y. Liang, Y. Rao, D. Zhu, J.J. Cao, Z. Shen, W. Ho, S.C. Lee, Environment-friendly carbon quantum dots/ ZnFe2O4 photocatalysys: characterization, biocompatibility, and mechanism for NO removal. Environ. Sci. Technol. 51, 2924–2933 (2017)

    Article  CAS  Google Scholar 

  14. R. Raeisi Shahraki, M. Ebrahimi, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater. 324, 3762–3765 (2012)

    Article  CAS  Google Scholar 

  15. M. Atif, S.K. Hasanain, M. Nadeem, Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun. 138, 416–421 (2006)

    Article  CAS  Google Scholar 

  16. M. Ebrahimi, R. Raeisi Shahraki, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Magnetic properties of Zinc ferrite nanoparticles synthesized by coprecipitation method. J. Supercond. Nov. Magn. 27, 1587–1592 (2014)

    Article  CAS  Google Scholar 

  17. J.A. Toledo-Antonio, N. Nava, M. Martınez, X. Bokhimi, Correlation between the magnetism of non-stoichiometric zinc ferrites and their catalytic activity for oxidative dehydrogenation of 1-butene. Appl. Catal. A: Gen. 234, 137–144 (2002)

    Article  CAS  Google Scholar 

  18. Y. Zhang, Y. Wu, Q. Qin, F. Wang, D. Chen, Characterization of zinc ferrite nanoparticles capped with different PVP concentrations. J. Magn. Magn. Mater. 409, 6–9 (2016)

    Article  CAS  Google Scholar 

  19. I. Ibrahim, O. Ali, I.M.T. Salama, A.A. Bahgat, M. Mohamed, Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Appl. Catal. B Environ. 181, 389–402 (2016)

    Article  CAS  Google Scholar 

  20. R. Awad, A.I. AbouAly, N.H. Mohammed, S. Isber, H.A. Motaweh, D. El-Said Bakeer, Investigation on superconducting properties of GdBa2Cu3O7 – δ added with nanosized ZnFe2O4. J. Alloys Compd. 610, 614–622 (2014)

    Article  CAS  Google Scholar 

  21. T. Zargar, A. Kermanpur, Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications. Ceram. Int. 43, 5794–5804 (2017)

    Article  CAS  Google Scholar 

  22. B. Behdadfar, A. Kermanpur, H. Sadeghi-Aliabadi, M.P. Morales, M. Mozaffari, Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications. J. Magn. Magn. Mater. 324, 2211–2217 (2012)

    Article  CAS  Google Scholar 

  23. S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J. Magn. Magn. Mater. 308, 210–213 (2007)

    Article  CAS  Google Scholar 

  24. J. Yan, S. Mo, J. Nie, W. Chen, X. Shen, J. Hu, G. Hao, H. Tong, Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid. Colloids Surf. A: Physicochem. Eng. Asp. 340, 109–114 (2009)

    Article  CAS  Google Scholar 

  25. P. Pradhan, J. Giri, R. Banerjee, J. Bellare, D. Bahadur, Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J. Magn. Magn. Mater. 311, 282–287 (2007)

    Article  CAS  Google Scholar 

  26. K. Ramamurthi et al., Synthesis of zinc ferrite (ZnFe2O4) nanoparticles with different cap** agents. Int. J. Chem. Technol. Res. 7(5), 2144–2149 (2014–2015)

  27. S. Pereira da Silva, D. Costa de Moraes, D. Samios, Iron oxide nanoparticles coated with polymer derived from epoxidized oleic acid and Cis-1,2-cyclohexanedicarboxylic anhydride: synthesis and characterization. J. Mater. Sci. Eng. 5, 10000247 (2016)

    Google Scholar 

  28. M. Bloemen, W. Brullot, T.T. Luong, N. Geukens, A. Gils, T. Verbiest, Improved functionalization of oleic acid-coated iron oxide nanoparticles for medical application. J. Nanopart. Res. 14, 1100 (2012)

    Article  Google Scholar 

  29. Y. Shi, Z. Wang, J. Zhou, Facile synthesis of a flame retardant melamine phenylphosphate and its epoxy resin composites with simultaneously improved flame retardancy, smoke suppression and water resistance. RSC Adv. 8, 39214 (2018)

    Article  CAS  Google Scholar 

  30. V.A.M. Brabers, Infrared spectra of cubic and tetragonal Manganese Ferrites. Phys. Status Solidi (B) 33, 563–572 (1969)

    Article  CAS  Google Scholar 

  31. P.A. Vinosha, L.A. Mely, J.E. Jeronsia, S. Krishnan, S.J. Das, Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-recipitation route. Optik 134, 99–108 (2017)

    Article  CAS  Google Scholar 

  32. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall Inc, Hoboken, 2001), pp.167–171

    Google Scholar 

  33. Y. Köseoğlu, A. Baykal, M.S. Toprak, F. Gözüak, A.C. Başaran, B. Aktaş, Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Alloys Compd. 462, 209–213 (2008)

    Article  Google Scholar 

  34. J. Al Boukhari, L. Zeidan, A. Khalaf, R. Awad, Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys. 516, 116–124 (2019)

    Article  CAS  Google Scholar 

  35. M.A. Almessiere, Y. Slimani, U. Kurtan, S. Guner, M. Seertkol, S.E. Shirsath, S. Akhtar, A. Baykal, I. Ercan, Structural, magnetic, optical properties, and cation distribution of nanosized Co0.7Zn0.3TmxFe2−xO4 (0.0≤x≤0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrason.-Sonochem. 58, 104638 (2019)

    Article  CAS  Google Scholar 

  36. P.J. Kadu, S.S. Kushare, D.D. Thacker, S.G. Gattani, Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharm. Dev. Technol. 16, 65–74 (2011)

    Article  CAS  Google Scholar 

  37. M.A. Moharram, M.G. Khafagi, Thermal behavior of poly(acrylic acid)–poly(vinyl pyrrolidone) and poly(acrylic acid)–metal–poly(vinyl pyrrolidone) complexes. J. Appl. Polym. Sci. 102, 4049–4057 (2006)

    Article  CAS  Google Scholar 

  38. K.W. Joh, C.E. Lee, C.H. Lee, Y.H. Jeong, ESR study of magnetic structures in La0.7Ca0.3MnO3. Curr. Appl. Phys. 2, 411–415 (2002)

    Article  Google Scholar 

  39. S. Biederer, T. Knopp, T.F. Sattel, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, T.M. Buzug, Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J. Phys. D: Appl. Phys. 42, 205007 (2009)

    Article  Google Scholar 

  40. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  41. M.A. Almessiere, Y. Slimani, A. Baykal, Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceram. Int. 45, 963–969 (2019)

    Article  CAS  Google Scholar 

  42. J. Garcia-Otero, A.J. Garcia-Bastida, J. Rivas, Influence of temperature on the coercive field of non-interacting fine magnetic particles. J. Magn. Magn. Mater. 189, 377–383 (1998)

    Article  CAS  Google Scholar 

  43. J. Bruvera, P. Mendoza Zélis, M.P. Calatayud, G.F. Goya, F.H. Sánchez, Determination of the blocking temperature of magnetic nanoparticles: the good, the bad, and the ugly. J. Appl. Phys. 118, 184304 (2015)

    Article  Google Scholar 

  44. M. Irfan, N. Dogan, T. Sapmaz, A. Bingolbali, Development of MPI relaxometer for characterization of superparamagnetic nanoparticles. J. Magn. Magn. Mater. 536, 168082 (2021)

    Article  CAS  Google Scholar 

  45. M.I. Shliomis, Magnetic fluids. Sov. Phys.-Uspekhi. 17, 153–159 (1974)

    Article  Google Scholar 

  46. T. Knopp, T.M. Buzug, Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation (Springer, Heidelberg, 2012)

    Book  Google Scholar 

  47. C.B. Top, S. Ilbey, H.E. Guven, Electronically rotated and translated field-free line generation for open bore magnetic particle imaging. Med. Phys. 44, 12 (2017)

    Article  Google Scholar 

  48. M. Irfan, N. Dogan, O. Mercan Dogan, A. Bingolbali, Development of magnetic particle imaging (MPI) scanner for phantom image of tracer agents. IEEE Trans. Magn. 8, 1–6 (2022)

    Article  Google Scholar 

  49. N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko, Manganese doped-iron oxide nanoparticles and their potential as tracer agents for magnetic particle imaging (MPI). J. Magn. Magn. Mater. 561, 169654 (2022)

    Article  CAS  Google Scholar 

  50. M. Irfan, N. Dogan, A. Bingolbali, F. Aliew, Synthesis and characterization of NiFe2O4 magnetic nanoparticles with different coating materials for magnetic particle imaging (MPI). J. Magn. Magn. Mater. 537, 168150 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Scientific and Technological Research Council of Türkiye (TUBITAK Grant No: 115E776).

Funding

The funded was provided by Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (Grant No: 115E776).

Author information

Authors and Affiliations

Authors

Contributions

ND contributed to the study conception and design. Material preparation, data collection and analysis were performed by ND, GC and MI. The first draft of the manuscript was written by GC. The manuscript was revised by MI. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to N. Dogan or G. Caliskan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This study does not include research on animals and humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, N., Caliskan, G. & Irfan, M. Synthesis and characterization of biocompatible ZnFe2O4 nanoparticles for magnetic particle imaging (MPI). J Mater Sci: Mater Electron 34, 390 (2023). https://doi.org/10.1007/s10854-022-09799-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09799-x

Navigation