Log in

Magnetic Properties of Zinc Ferrite Nanoparticles Synthesized by Coprecipitation Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The influence of the precipitant and ferric concentration on the magnetic properties of coprecipitated zinc ferrite nanoparticles has been investigated. The nanoparticles were characterized using X-ray diffraction, scanning and transmission electron microscope, and vibrating sample magnetometer techniques. The results showed that the single-phase zinc ferrite with partially inverse spinel structures can be formed at high concentrations. The inversion coefficient calculated by the Rietveld method decreases with increasing of the concentrations, may be due to the crystal growth. The magnetic measurements exhibited that the coprecipitated zinc ferrite nanoparticles were superparamagnet and magnetization decreases with increasing of the concentrations through decreasing of inversion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ikenaga, N., Ohgaito, Y., Matsushima, H., Suzuki, T.: Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning. Fuel 83, 661–669 (2004)

    Article  Google Scholar 

  2. Jung, C.W., Jacobs, P.: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661–674 (1995)

    Article  Google Scholar 

  3. Liu, J.P., et al. (eds.): Nanoscale Magnetic Materials and Applications. Springer, Berlin (2009)

    Google Scholar 

  4. Brusentsov, N.A., Gogosov, V., Brusentsova, T., Sergeev, A., Jurchenko, N., Kuznetsov, A.A., Kuznetsov, O.A., Shumakov, L.: Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J. Magn. Magn. Mater. 225, 113–117 (2001)

    Article  ADS  Google Scholar 

  5. Atif, M., Hasanain, S.K., Nadeem, M.: Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun. 138, 416–421 (2006)

    Article  ADS  Google Scholar 

  6. Kamiyama, T., Haneda, K., Sato, T., Ikeda, S., Asano, H.: Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction. Solid State Commun. 81, 563 (1992)

    Article  ADS  Google Scholar 

  7. Sato, T., Haneda, K., Seki, N., Iijima, T.: Morphology and magnetic properties of ultrafine ZnFe2O4 particles. Appl. Phys. A 50, 13 (1990)

    Article  ADS  Google Scholar 

  8. Jayadevan, B., Tohji, K., Nakatsuka, K.: Structure analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine structure. J. Appl. Phys. 76, 6325 (1994)

    Article  ADS  Google Scholar 

  9. Oliver, S.A., Harris, V.G., Hamdeh, H., Ho, J.C.: Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl. Phys. Lett. 76, 2761 (2000)

    Article  ADS  Google Scholar 

  10. Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chat-topadhyay, K., Guérault, H., Greneche, J.-M.: Ferrimagnetic ordering in nanostructured zinc ferrite. Scr. Mater. 44, 1407 (2001)

    Article  Google Scholar 

  11. Yao, C., Zeng, Q., Goya, G., Torres, T., Liu, J., Wu, H., Ge, M., Zeng, Y., Wang, Y., Jiang, J.: ZnFe2O4 nanocrystals: synthesis and magnetic properties. J. Phys. Chem. C 111, 12274–12278 (2007)

    Article  Google Scholar 

  12. Wang, L., Zhou, Q., Li, F.: Onic disorder and Yaffet–Kittel angle in nanoparticles of ZnFe2O4 prepared by sol-gel method. Phys. Status Solidi, B Basic Res. 241, 377–382 (2004)

    Article  ADS  Google Scholar 

  13. Kundu, A., Upadhyay, C., Verma, H.: Magnetic properties of a partially inverted zinc ferrite synthesized by a new coprecipitation technique using urea. Phys. Lett. A 311, 410–415 (2003)

    Article  ADS  Google Scholar 

  14. Hu, X., Guan, P., Yan, X.: Hydrothermal synthesis of nano-meter microporous zinc ferrite. China Particuology 2, 135–137 (2004)

    Article  Google Scholar 

  15. Zhang, R., Huang, J., Zhao, J., Sun, Z., Wang, Y.: Sol–gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization. Energy Fuels 21, 2682–2687 (2007)

    Article  Google Scholar 

  16. Reddy, B.R., Sivasankar, T., Sivakumar, M., Moholkar, V.S.: Physical facets of ultrasonic cavitational synthesis of zinc ferrite particles. Ultrason. Sonochem. 17, 416–426 (2010)

    Article  Google Scholar 

  17. Raeisi Shahraki, R., et al.: Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater. 324, 3762–3765 (2012)

    Article  ADS  Google Scholar 

  18. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  19. Bid, S., Pradhan, S.K.: Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82, 27–37 (2003)

    Article  Google Scholar 

  20. Kim, D.K., Mikhaylova, M., Zhang, Y., Muhammed, M.: Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 15, 1617 (2003)

    Article  Google Scholar 

  21. Jolivet, J.P., Chanéac, C., Tronc, E.: Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 5, 481–483 (2004)

    Article  Google Scholar 

  22. Tao, K., Dou, H., Sun, K.: Interfacial coprecipitation to prepare magnetite nanoparticles: concentration and temperature dependence. Colloids Surf. A, Physicochem. Eng. Asp. 320, 115–122 (2008)

    Article  Google Scholar 

  23. Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893 (2004)

    Article  Google Scholar 

  24. Massart, R., Roger, J., Cabuil, V.: New trends in chemistry of magnetic colloids: polar and non polar magnetic fluids, emulsions, capsules and vesicles. Braz. J. Phys. 25, 135–141 (1995)

    Google Scholar 

  25. Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Guérault, H., Greneche, J.-M.: J. Phys. Condens. Matter 12, 7795–7805 (2000)

    Article  ADS  Google Scholar 

  26. Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30, 120S (1959)

    Article  ADS  Google Scholar 

  27. Kumar, V., Rana, A., Yadav, M.S., Pant, R.P.: Size-induced effect on nano-crystalline CoFe2O4. J. Magn. Magn. Mater. 320, 1729–1734 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Raeisi Shahraki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi, M., Raeisi Shahraki, R., Seyyed Ebrahimi, S.A. et al. Magnetic Properties of Zinc Ferrite Nanoparticles Synthesized by Coprecipitation Method. J Supercond Nov Magn 27, 1587–1592 (2014). https://doi.org/10.1007/s10948-014-2485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2485-4

Keywords

Navigation