Log in

Rutin precursor for the synthesis of superparamagnetic ZnFe2O4 nanoparticles: experimental and density functional theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Superparamagnetic nanoparticles could be greatly used in biomedical fields like cancer hyperthermia, magnetic separation, and magnetic resonance imaging (MRI) enhancement. Furthermore, the biosynthetic method has been used to produce various nanostructures and nanoparticles due to the economical and eco-friendly route. In the present study, zinc ferrite (ZnFe2O4) nanoparticles were biosynthesized by applying rutin from Ruta graveolens L. extracted as a reducing and stabilizing agent. Furthermore, the chemical, thermal, and magnetic properties of the nanoparticles were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering method (DLS), ultraviolet–visible absorption spectroscopy (UV–Vis), vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetry analysis (TGA). The XRD and TEM results represented that the nearly spherical shape of zinc ferrite nanoparticles with an average diameter of 20–30 nm was successfully synthesized with a cubic structure. ZnFe2O4 nanoparticles exhibited superparamagnetic properties with the magnetization of 5.9 emu/g at 15 kOe that could be applied for medical devices or tissue imaging in the future. DFT calculations on the crystal structure, electronic, and magnetic properties of the ZnFe2O4 revealed that both simulated crystal structures and magnetic properties are in good agreement with experimental results. The band gap of ZnFe2O4 is 1.93 eV represented that is in good consistent with the optical band gap (2.11 eV). Furthermore, electronic results revealed strong interactions between O with Zn and Fe atoms. Both O–Zn and O–Fe bonds have a covalent character as well as the O–Zn bond strength is more than the O–Fe bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Wang, G. Yang, L. Wang, W. Yan, J. Mater. Chem. A 4(22), 8620 (2016)

    Article  Google Scholar 

  2. T. Liu, J. Liu, Q. Liu, L. Rumin, H. Zhang, X. **g, J. Wang, Sens. Actuat. B Chem. 250, 111 (2017)

    Article  Google Scholar 

  3. F. Dehghani, S. Shahmoradi, M. Naghizadeh, T. Firuzyar, A. Vaez, S.R. Kasaee, A.M. Amani, S. Mosleh-Shirazi, Appl. Phys. A 128(3), 1 (2022)

    Article  Google Scholar 

  4. S. Mosleh-Shirazi, M.A.J. Kouhbanani, N. Beheshtkhoo, S.R. Kasaee, A. Jangjou, P. Izadpanah, A.M. Amani, Appl. Phys. A 127(11), 1 (2021)

    Article  Google Scholar 

  5. H.N. Abdelhamid, H.-F. Wu, Mater. Sci. Eng., C 45, 438 (2014)

    Article  Google Scholar 

  6. J. Kurian, M.J. Mathew, J. Magn. Magn. Mater. 451, 121 (2018)

    Article  ADS  Google Scholar 

  7. D. Andhare, S. Jadhav, M. Khedkar, S.B. Somvanshi, S. More, K. Jadhav, J. Phys. 1644, 012014 (2020)

    Google Scholar 

  8. S.M. Mousavi, S.A. Hashemi, Y. Ghasemi, A. Atapour, A.M. Amani, A.S. Dashtaki, A. Babapoor, O. Arjmand, Artif. Cells Nanomed. Biotechnol. 46, S855 (2018)

    Article  Google Scholar 

  9. Y. Sadeghipour, M.H. Alipour, H.R.G. Jafarbeigloo, A. Salahvarzi, M. Mirzaii, A.M. Amani, S. Mosleh-shirazi, M. Mehrabi, Nanomed. Res. J. 5(3), 265 (2020)

    Google Scholar 

  10. G.H. Mahdavinia, S. Rostamizadeh, A.M. Amani, H. Sepehrian, Heterocycl. Commun. 18(1), 33 (2012)

    Article  Google Scholar 

  11. S. Rostamizadeh, R. Aryan, H.R. Ghaieni, A.M. Amani, Monatshefte für Chemie-Chem. Monthly 139(10), 1241 (2008)

    Article  Google Scholar 

  12. S. Rajeswaran, S.S. Thirugnanasambandan, S.R. Subramaniyan, S. Kandasamy, R. Vilwanathan, Appl. Phys. A 125(2), 1 (2019)

    Article  Google Scholar 

  13. L. Chen, Y. Huo, Y.X. Han, J.F. Li, H. Ali, I. Batjikh, J. Hurh, J.Y. Pu, D.C. Yang, Appl. Phys. A 126(6), 1 (2020)

    Google Scholar 

  14. M.A.J. Kouhbanani, N. Beheshtkhoo, S. Taghizadeh, A.M. Amani, V. Alimardani, Adv. Nat. Sci. Nanosci. Nanotechnol. 10(1), 015007 (2019)

    Article  ADS  Google Scholar 

  15. M. Kiani, N. Rabiee, M. Bagherzadeh, A.M. Ghadiri, Y. Fatahi, R. Dinarvand, T.J. Webster, Nanomed. Nanotechnol. Biol. Med. 32, 102331 (2021)

    Article  Google Scholar 

  16. M.A.J. Kouhbanani, N. Beheshtkhoo, P. Nasirmoghadas, S. Yazdanpanah, K. Zomorodianc, S. Taghizadeh, A.M. Amani, J. Environ. Treat. Tech. 7(3), 461 (2019)

    Google Scholar 

  17. G. Nazeruddin, N. Prasad, S. Waghmare, K. Garadkar, I. Mulla, J. Alloy. Compd. 583, 272 (2014)

    Article  Google Scholar 

  18. J.S. Moodley, S.B.N. Krishna, K. Pillay, P. Govender, Adv. Nat. Sci. Nanosci. Nanotechnol. 9(1), 015011 (2018)

    Article  ADS  Google Scholar 

  19. A. Korotkova, O. Polivanova, I. Gavrish, E. Baranova, S. Lebedev, Earth Environ. Sci. 341, 012175 (2019)

    Google Scholar 

  20. K.B. Narayanan, N. Sakthivel, Adv. Coll. Interface. Sci. 156(1–2), 1 (2010)

    Article  Google Scholar 

  21. J. Virkutyte, R.S. Varma, Chem. Sci. 2(5), 837 (2011)

    Article  Google Scholar 

  22. S. Lin, H. Wang, T. Yu, NanoImpact 7, 1 (2017)

    Article  ADS  Google Scholar 

  23. S.A. Parray, J. Bhat, G. Ahmad, N. Jahan, G. Sofi, M. IFS, Am. J. Pharm. Tech. Res. 2(2), 239 (2012)

    Google Scholar 

  24. K.H. Janbaz, S.A. Saeed, A.H. Gilani, Fitoterapia 73(7–8), 557 (2002)

    Article  Google Scholar 

  25. S.A. Aherne, N.M. O’Brien, Free Radical Biol. Med. 29(6), 507 (2000)

    Article  Google Scholar 

  26. T. Bora, A. Dousse, K. Sharma, K. Sarma, A. Baev, G.L. Hornyak, G. Dasgupta, Int. J. Smart Nano Mater. 10(2), 1 (2018)

    Google Scholar 

  27. M.S. Ansari, O. Otegbeye, M. Trivedi, S. Goqo, J. Appl. Comput. Mech. 7(4), 2024 (2020)

    Google Scholar 

  28. S. Mosleh-Shirazi, G. Hua, F. Akhlaghi, X. Yan, D. Li, Sci. Rep. 5(1), 1 (2015)

    Google Scholar 

  29. E.H. Atmani, I. Bziz, N. Fazouan, M. Aazi, Appl. Phys. A 127(11), 1 (2021)

    Article  Google Scholar 

  30. Y. Pan, J. Electron. Mater. 48(8), 5154 (2019)

    Article  ADS  Google Scholar 

  31. Y. Pan, Mater. Sci. Semicond. Process. 135, 106084 (2021)

    Article  Google Scholar 

  32. Y. Pan, W. Guan, Int. J. Hydrogen Energy 44(21), 10407 (2019)

    Article  Google Scholar 

  33. M. Isik, A. Kostka, G. Eggeler, Acta Mater. 81, 230 (2014)

    Article  Google Scholar 

  34. M.H.N. Assadi, D.A. Hanaor, J. Appl. Phys. 113(23), 233913 (2013)

    Article  ADS  Google Scholar 

  35. S. Grimme, J. Chem. Phys. 124(3), 034108 (2006)

    Article  ADS  Google Scholar 

  36. U. Zimmerli, M. Parrinello, P. Koumoutsakos, J. Chem. Phys. 120(6), 2693 (2004)

    Article  ADS  Google Scholar 

  37. S. Grimme, J. Comput. Chem. 25(12), 1463 (2004)

    Article  Google Scholar 

  38. K. Lalithambika, K. Shanmugapriya, S. Sriram, Appl. Phys. A 125(12), 1 (2019)

    Article  Google Scholar 

  39. D. Pu, Y. Pan, Vacuum 196, 110727 (2022)

    Article  ADS  Google Scholar 

  40. D. Karataş, A. Tekin, F. Bahadori, M.S. Çelik, J. Mater. Chem. B 5(40), 8070 (2017)

    Article  Google Scholar 

  41. D. Richard, N. Rendtorff, Appl. Clay Sci. 219, 106444 (2022)

    Article  Google Scholar 

  42. J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31(9), 659 (2006)

    Article  Google Scholar 

  43. C. Yao, Q. Zeng, G. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J. Jiang, J. Phys. Chem. C 111(33), 12274 (2007)

    Article  Google Scholar 

  44. R. Sai, S.D. Kulkarni, S.S. Bhat, N.G. Sundaram, N. Bhat, S. Shivashankar, RSC Adv. 5(14), 10267 (2015)

    Article  ADS  Google Scholar 

  45. Z.Ž Lazarević, Č Jovalekić, V.N. Ivanovski, A. Rečnik, A. Milutinović, B. Cekić, N.Ž Romčević, J. Phys. Chem. Solids 75(7), 869 (2014)

    Article  ADS  Google Scholar 

  46. A. Atapour, H. Khajehzadeh, M. Shafie, M. Abbasi, S. Mosleh-Shirazi, S.R. Kasaee, A.M. Amani, Mater. Today Commun. 30, 103181 (2022)

    Article  Google Scholar 

  47. S. Mosleh-Shirazi, M. Abbasi, M. Shafiee, S.R. Kasaee, A.M. Amani, Mater. Today Commun. 26, 102064 (2021)

    Article  Google Scholar 

  48. A.H. Meisami, M. Abbasi, S. Mosleh-Shirazi, A. Azari, A.M. Amani, A. Vaez, A. Golchin, Eur. J. Pharmacol. 926, 175011 (2022)

    Article  Google Scholar 

  49. X. Xu, A.K. Azad, J.T. Irvine, Catal. Today 199, 22 (2013)

    Article  Google Scholar 

  50. H. Dang, Y. Qiu, Z. Cheng, W. Yang, H. Wu, H. Fan, X. Dong, Ceram. Int. 42(8), 10520 (2016)

    Article  Google Scholar 

  51. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, Zeitschrift Für Kristallographie-Cryst. Mater. 220(5–6), 567 (2005)

    Article  ADS  Google Scholar 

  52. S. Lohrasbi, M.A.J. Kouhbanani, N. Beheshtkhoo, Y. Ghasemi, A.M. Amani, S. Taghizadeh, BioNanoScience 9(2), 317 (2019)

    Article  Google Scholar 

  53. G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma, R.P. Singh, J. Nanopart. Res. 13(7), 2981 (2011)

    Article  ADS  Google Scholar 

  54. N. Beheshtkhoo, M.A.J. Kouhbanani, A. Savardashtaki, A.M. Amani, S. Taghizadeh, Appl. Phys. A 124(5), 1 (2018)

    Article  Google Scholar 

  55. M. Chandrika, A. Ravindra, C. Rajesh, S. Ramarao, S. Ju, Mater. Chem. Phys. 230, 107 (2019)

    Article  Google Scholar 

  56. N. Budhiraja, V. Kumar, S. Singh, Ceram. Int. 45(1), 1067 (2019)

    Article  Google Scholar 

  57. S. Roy, M.P. Ghosh, S. Mukherjee, Appl. Phys. A 127(6), 1 (2021)

    Article  Google Scholar 

  58. N. Helaili, G. Mitran, I. Popescu, K. Bachari, I.-C. Marcu, A. Boudjemaa, J. Electroanal. Chem. 742, 47 (2015)

    Article  Google Scholar 

  59. P.-L. Liang, L.-Y. Yuan, H. Deng, X.-C. Wang, L. Wang, Z.-J. Li, S.-Z. Luo, W.-Q. Shi, Appl. Catal. B 267, 118688 (2020)

    Article  Google Scholar 

  60. Y.-C. Ge, Z.-L. Wang, M.-Z. Yi, L.-P. Ran, Trans. Nonferrous Metals Soc. China 29(7), 1503 (2019)

    Article  Google Scholar 

  61. C. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche, Scripta Mater. 44(8–9), 1407 (2001)

    Article  Google Scholar 

  62. E. Yu, Y. Pan, Int. J. Hydrogen Energy 46(71), 35342 (2021)

    Article  Google Scholar 

  63. D. Pu, Y. Pan, Ceram. Int. 48(8), 11518 (2022)

    Article  Google Scholar 

  64. S. Chen, Y. Pan, Appl. Surf. Sci. 591, 153168 (2022)

    Article  Google Scholar 

  65. Y. Pan, S. Chen, Vacuum 198, 110898 (2022)

    Article  ADS  Google Scholar 

  66. A. Lassoued, F. Karolak, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28(24), 18857 (2017)

    Google Scholar 

  67. M. Hadi, S. Naqib, S.-R. Christopoulos, A. Chroneos, A. Islam, J. Alloy. Compd. 724, 1167 (2017)

    Article  Google Scholar 

  68. F.M. Hossain, G.E. Murch, I.V. Belova, B.D. Turner, Solid State Commun. 149(29–30), 1201 (2009)

    Article  ADS  Google Scholar 

  69. A. Pishtshev, S.Z. Karazhanov, J. Chem. Phys. 146(6), 064706 (2017)

    Article  ADS  Google Scholar 

  70. V. Blanco-Gutiérrez, F. Jiménez-Villacorta, P. Bonville, M.J. Torralvo-Fernández, R. Sáez-Puche, J. Phys. Chem. C 115(5), 1627 (2011)

    Article  Google Scholar 

  71. M. Naher, S. Naqib, Sci. Rep. 11(1), 1 (2021)

    Article  Google Scholar 

  72. O. Caltun, H. Chiriac, N. Lupu, I. Dumitru, B.P. Rao, J. Optoelectron. Adv. Mater. 9(4), 1158 (2007)

    Google Scholar 

  73. Y. Hou, X. Yan, Y. Huang, S. Zheng, S. Hou, Y. Ouyang, J. Magn. Magn. Mater. 495, 165862 (2020)

    Article  Google Scholar 

  74. K. Aghrich, M. Abdellaoui, N. Mamouni, A. Bellaouchou, M. Fekhaoui, E. Hlil, O. Mounkachi, Appl. Phys. A 126(12), 1 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sareh Mosleh-Shirazi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1784 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, A.M., Danaie, P., Vaez, A. et al. Rutin precursor for the synthesis of superparamagnetic ZnFe2O4 nanoparticles: experimental and density functional theory. Appl. Phys. A 128, 696 (2022). https://doi.org/10.1007/s00339-022-05763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05763-y

Keywords

Navigation