Log in

Layered MoS2/PPy nanotube composites with enhanced performance for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using polypyrrole (PPy) nanotubes as the substrate, the layered molybdenum disulfide (MoS2) nanosheets were wrapped on PPy nanotubes to form MoS2/PPy nanocomposites by a hydrothermal reaction. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that MoS2 nanosheets coated uniformly on the surface of PPy nanotubes owing to the electrostatic force. The specific capacitance of the MoS2/PPy nanocomposites was high up to 307.5 F g−1, much higher than that of the pure PPy with specific capacitance of 106.3 F g−1 and MoS2 with specific capacitance of 138.5 F g−1 at a current density of 1.0 A g−1 in 1 M KCl electrolyte. And the special structure of MoS2/PPy nanocomposites electrode reduces the deformation during the charge–discharge process and thus improves the rate stability and electrochemical cycling stability of the electrode significantly. The specific capacitance retains 96.47 % after 1000 charge–discharge processes which provides potential as supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.B. Karandikar, D.B. Talange, U.P. Mhaskar, R. Bansal, Energy 40, 131–138 (2012)

    Article  Google Scholar 

  2. J. Li, M. Yang, J. Wei, Z. Zhou, Nanoscale 4, 4498–4503 (2012)

    Article  Google Scholar 

  3. D.P. Dubal, R. Holze, Energy 51, 407–412 (2013)

    Article  Google Scholar 

  4. K. Wang, L. Zhang, B. Ji, J. Yuan, Energy 59, 440–444 (2013)

    Article  Google Scholar 

  5. M. Yang, B. Cheng, H. Song, X. Chen, Electrochim. Acta 55, 7021–7027 (2010)

    Article  Google Scholar 

  6. M. Yang, Y. Zhong, X. Zhou, J. Ren, L. Su, J. Wei, Z. Zhou, J. Mater. Chem. A 2, 12519–12525 (2014)

    Article  Google Scholar 

  7. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21, 2366–2375 (2011)

    Article  Google Scholar 

  8. Y. Li, X. Ni, S. Ding, J. Mater. Sci. Mater. Electron. 26, 9001–9009 (2015)

    Article  Google Scholar 

  9. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Nat. Energy 1, 16070 (2016)

    Article  Google Scholar 

  10. K.M. Hercule, Q. Wei, A.M. Khan, Y. Zhao, X. Tian, L. Mai, Nano Lett. 13, 5685–5691 (2013)

    Article  Google Scholar 

  11. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652–655 (2007)

    Article  Google Scholar 

  12. W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hng, Q. Yan, J. Mater. Chem. 21, 3422–3427 (2011)

    Article  Google Scholar 

  13. M. Yang, Y. Zhong, J. Bao, X. Zhou, J. Wei, Z. Zhou, J. Mater. Chem. A 3, 11387–11394 (2015)

    Article  Google Scholar 

  14. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872–876 (2009)

    Article  Google Scholar 

  15. S. Ding, J.S. Chen, X.W. Lou, Chemistry 17, 13142–13145 (2011)

    Article  Google Scholar 

  16. G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, J. Power Sources 229, 72–78 (2013)

    Article  Google Scholar 

  17. K.J. Huang, L. Wang, Y.J. Liu, T. Gan, Y.M. Liu, L.L. Wang, Y. Fan, Electrochim. Acta 107, 379–387 (2013)

    Article  Google Scholar 

  18. J. **ao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Chem. Mater. 22, 4522–4524 (2010)

    Article  Google Scholar 

  19. Q. Weng, X. Wang, X. Wang, C. Zhang, X. Jiang, Y. Bando, D. Golberg, J. Mater. Chem. A 3, 3097–3102 (2015)

    Article  Google Scholar 

  20. K.J. Huang, L. Wang, J.Z. Zhang, L.L. Wang, Y.P. Mo, Energy 67, 234–240 (2014)

    Article  Google Scholar 

  21. S.B. Patil, K. Adpakpang, S.M. Oh, J.M. Lee, S.J. Hwang, Electrochim. Acta 176, 188–196 (2015)

    Article  Google Scholar 

  22. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011)

    Article  Google Scholar 

  23. T.K. Das, S. Prusty, Polym. Plast. Technol. 51, 1487–1550 (2012)

    Article  Google Scholar 

  24. P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, A. Cao, D. Wu, A.C.S. Appl, Mater. Interfaces 6, 5228–5234 (2014)

    Article  Google Scholar 

  25. J. Lei, Z. Jiang, X. Lu, G. Nie, C. Wang, Electrochim. Acta 176, 149–155 (2015)

    Article  Google Scholar 

  26. C. Sha, B. Lu, H. Mao, J. Cheng, X. Pan, J. Lu, Z. Ye, Carbon 99, 26–34 (2016)

    Article  Google Scholar 

  27. M. Li, L. Yang, J. Mater. Sci. Mater. Electron. 26, 4875–4879 (2015)

    Article  Google Scholar 

  28. K. Leonavicius, A. Ramanaviciene, A. Ramanavicius, Langmuir 27, 10970–10976 (2011)

    Article  Google Scholar 

  29. Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nano Energy 22, 422–438 (2016)

    Article  Google Scholar 

  30. J. Lei, Z. Li, X. Lu, W. Wang, X. Bian, T. Zheng, Y. Xue, C. Wang, J. Colloid Interface Sci. 364, 555–560 (2011)

    Article  Google Scholar 

  31. P. Xu, X. Han, C. Wang, D. Zhou, Z. Lv, A. Wen, X. Wang, B. Zhang, J. Phys. Chem. B 112, 10443–10448 (2008)

    Article  Google Scholar 

  32. A.D.W. Carswell, E.A. O’Rea, B.P. Grady, J. Am. Chem. Soc. 125, 14793–14800 (2003)

    Article  Google Scholar 

  33. J. Lei, X. Lu, G. Nie, Z. Jiang, C. Wang, Part. Part. Syst. Charact. 32, 886–892 (2015)

    Article  Google Scholar 

  34. X. Zhou, L.J. Wan, Y.G. Guo, Nanoscale 4, 5868–5871 (2012)

    Article  Google Scholar 

  35. J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, ACS Nano 9, 3837–3848 (2015)

    Article  Google Scholar 

  36. J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. **e, W. Yang, R. Yang, X. Bai, D. Shi, G. Zhang, ACS Nano 8, 6024–6030 (2014)

    Article  Google Scholar 

  37. Y. Qiao, L. Shen, M. Wu, Y. Guo, S. Meng, Mater. Lett. 126, 185–188 (2014)

    Article  Google Scholar 

  38. K.J. Huang, L. Wang, Y.J. Liu, Y.M. Liu, H.B. Wang, T. Gan, L.L. Wang, Int. J. Hydrogen Energy 38, 14027–14034 (2013)

    Article  Google Scholar 

  39. Z. Guo, Y. Zhong, Z. Xuan, C. Mao, F. Du, G. Li, RSC Adv. 5, 62624–62629 (2015)

    Article  Google Scholar 

  40. J. Zhang, Y. Yu, L. Liu, Y. Wu, Nanoscale 5, 3052–3057 (2013)

    Article  Google Scholar 

  41. M. Li, L. Yang, Y. Zhang, RSC Adv. 5, 1191–1197 (2015)

    Article  Google Scholar 

  42. G.P. Pandey, S.A. Hashmi, Y. Kumar, Energy Fuels 24, 6644–6652 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the first batch of Natural Science Foundation of Shandong Province (ZR2015BM001) and the Doctoral Startup Foundation of Qilu University of Technology (12042826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Yang, X., **ang, S. et al. Layered MoS2/PPy nanotube composites with enhanced performance for supercapacitors. J Mater Sci: Mater Electron 28, 1777–1784 (2017). https://doi.org/10.1007/s10854-016-5725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5725-5

Keywords

Navigation