Log in

Fabrication of polyaniline–few-layer MoS2 nanocomposite for high energy density supercapacitors

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyaniline–few-layer molybdenum disulfide nanocomposite (PANI–MoS2) has been synthesized by in situ polymerization of aniline over MoS2 using HCl as the dopant. X-ray crystallographic studies show the characteristic peaks of few-layered MoS2 in the PANI matrix. The changes in Raman and UV–Vis spectra have proved that there are definite interactions between PANI and few-layer MoS2.PANI–MoS2 nanocomposite as an electrode material for supercapacitor exhibits a maximum specific capacitance of 687 Fg−1 at a scan rate of 5 mVs−1 using cyclic voltammetry (CV) and a Csp of 612 Fg−1 at a current density of 0.2 Ag−1 using chronopotentiometry (CP). Further, the material also exhibits a high energy density of 128 Wh kg−1with a maximum power density of 9.8 kW kg−1 and a tremendous cyclic stability with 93% capacitance retention after 2000 cycles. These superior electrochemical results over bare PANI and MoS2 showed the PANI–MoS2 nanocomposites to be a capable electrode material for energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou L, Li HQ, Yu CZ, Zhou XF, Tang JW, Meng Y, **a YY, Zhao DY (2006) Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. Carbon 44:1601–1604

    Article  CAS  Google Scholar 

  2. Shen GZ, Sun XR, Zhang HW, Liu Y, Zhang J, Meka A, Zhou L, Yu CZ (2015) Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic-organic self-assembly and superior supercapacitor performance. J Mater Chem 3:24041–24048

    Article  CAS  Google Scholar 

  3. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  PubMed  Google Scholar 

  4. Liu TY, Finn LR, Yu MH, Wang HY, Zhai T, Lu XH, Tong YX, Li Y (2014) Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett 14:2522–2527

    Article  CAS  PubMed  Google Scholar 

  5. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  6. Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepro X, Kozlov ME, Baughman RH, Kim SJ (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970–1977

    Article  CAS  PubMed  Google Scholar 

  7. Ran L, Duay J, Sang BL (2010) Nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4:4299–4307

    Article  CAS  Google Scholar 

  8. Chen X, Zhu H, Chen YC, Shang Y, Cao A, Hu L, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density li-ion cathodes. ACS Nano 6:7948–7955

    Article  CAS  PubMed  Google Scholar 

  9. Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S, Huh YS (2012) High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4:4983–4988

    Article  CAS  PubMed  Google Scholar 

  10. Song Y, Liu T, Xu X, Feng D, Li Y, Liu X (2015) Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv Funct Mater 25:4626–4632

    Article  CAS  Google Scholar 

  11. Yin Y, Liu C, Fan S (2012) Well-constructed CNT Mesh/PANI nanoporous electrode and its thickness effect on the supercapacitor properties. J Phys Chem C 116:26185–26189

    Article  CAS  Google Scholar 

  12. Ryu I, Yang M, Kwon H, Park HK, Do YR, Lee SB, Yim S (2014) Coaxial RuO2-ITO nanopillars for transparent supercapacitor application. Langmuir 30:1704–1709

    Article  CAS  PubMed  Google Scholar 

  13. Shown I, Ganguly A, Chen LC, Chen KH (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3:2–26

    Article  CAS  Google Scholar 

  14. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  CAS  Google Scholar 

  15. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318

    Article  CAS  PubMed  Google Scholar 

  16. Tang HJ, Wang JY, Yin HJ, Zhao HJ, Wang D, Tang ZY (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123

    Article  CAS  PubMed  Google Scholar 

  17. Li H, **n Z, Zhang Q, Zhang H (2010) Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives. Polym In 59:279–289

    CAS  Google Scholar 

  18. Lijun R, Gaini Z, Zhe Y, Li** K, Hua Xu, Feng S, Zhibin L, Zong HL (2015) Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor. ACS Appl Mater Interfaces 51:28294–28302

    Google Scholar 

  19. Wu Q, Xu Y, Yao Z, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Chen L, Yan B, Wang C, Zhu F, Jiang X, Chao Y, Yang G (2014) In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for materials for high-performance supercapacitors. J Mater Chem A 2:8334–8339

    Article  CAS  Google Scholar 

  21. Yang C, Chen Z, Shakir I, Xu Y, Lu H (2016) Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors. Nano Res 9:951–962

    Article  CAS  Google Scholar 

  22. Gopalakrishnan, Sultan S, Govindaraj A, Rao CNR (2015) Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC 1.5 N, MoS 2 and WS 2. Nano Energy 12:52–58

    Article  CAS  Google Scholar 

  23. Huang KJ, Wang L, Liu YJ, Wang HB, Liu YM, Wang LL (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2, composites for high-performance supercapacitor. Electrochim Acta 109:587–594

    Article  CAS  Google Scholar 

  24. Li L, Raji ARO, Fei HL, Yang Y, Samuel ELG, Tour JM (2013) Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl Mater Interfaces 5:6622–6627

    Article  CAS  PubMed  Google Scholar 

  25. Kim M, Lee C, Jang J (2014) Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater 24:2489–2499

    Article  CAS  Google Scholar 

  26. Wang ZL, He XJ, Ye SH, Tong YX, Li GR (2014) Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl Mater Interfaces 6:642–647

    Article  CAS  PubMed  Google Scholar 

  27. Han G, Liu Q, Zhang Y, Kan LL, Zhang EJ, Tang SP, Tang J (2014) MnO2 nanorods intercalatinggraphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci Rep 4:4824–4830

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meng YN, Wang K, Zhang YJ, Wei ZX (2013) Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater 25:6985–6990

    Article  CAS  PubMed  Google Scholar 

  29. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  PubMed  Google Scholar 

  30. Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  CAS  PubMed  Google Scholar 

  31. Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Article  CAS  PubMed  Google Scholar 

  32. Yan XB, Chen JT, Yang J, Xue QJ, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Chen L, Yan B, Wang CG, Zhu F, Jiang XF, Chao YM, Yang G (2014) In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high performance supercapacitor. J Mater Chem A 2:8334–8341

    Article  CAS  Google Scholar 

  34. Wang YF, Yang XW, Qiu L, Li D (2013) Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ Sci 6:477–481

    Article  CAS  Google Scholar 

  35. Liu Y, Deng RJ, Wang Z, Liu HT (2015) MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes. J Mater Chem A 3:17165–17171

    Article  CAS  Google Scholar 

  36. Li HL, He Y, Pavlinek V, Cheng QL, Saha P, Li CZ (2015) MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes. J Mater Chem A 3:17165–17171

    Article  CAS  Google Scholar 

  37. Blanchet GB, Fincher CR, Gao F (2003) Polyaniline nanotube composites: a high-resolution printable conductor. Appl Phys Lett 82:1290–1296

    Article  CAS  Google Scholar 

  38. Fite C, Cao Y, Heeger AJ (1989) Magnetic susceptibility of crystalline polyaniline. Solid State Commun 70:245–247

    Article  CAS  Google Scholar 

  39. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    Article  CAS  Google Scholar 

  40. Macdiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–332

    Article  CAS  Google Scholar 

  41. Pawar SG, Patil SL, Mane AT, Raut BT, Patil VB (2009) Growth, characterization and gas sensing properties of polyaniline thin films. Arch Appl Sci Res 2:109–114

    Google Scholar 

  42. Mazeikiene R, Tomkute V, Kuodis Z, Niaura G, Malinauskas A (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–332

    Article  Google Scholar 

  43. Bernard MC, Hugot-le Goff A (2006) Quantitative characterization of polyaniline films using Raman spectroscopy: I: polaron lattice and bipolaron. Electrochim Acta 52:595–603

    Article  CAS  Google Scholar 

  44. Salvatierra RV, Oliveira MM, Zarbin AJG (2010) One-pot synthesis and processing of transparent, conducting, and freestanding carbon nanotubes/polyaniline composite films. Chem Mater 22:5222–5234

    Article  CAS  Google Scholar 

  45. Valles C, Jimenez P, Mu E, Benito AM, Maser WK (2011) Simultaneous reduction of graphene oxide and polyaniline: do**-assisted formation of a solid-state charge-transfer complex. J Phys Chem C 115:10468–10474

    Article  CAS  Google Scholar 

  46. Wang JG, Yang Y, Huang ZH, Kang F (2012) Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J Power Sources 204:236–243

    Article  CAS  Google Scholar 

  47. Li Y, Gong J, He G, Deng Y (2011) Synthesis of polyaniline nanotubes using Mn2O3 nanofibres as oxidizing agent and their ammonia sensing properties. Synth Met 161:56–61

    Article  CAS  Google Scholar 

  48. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923

    Article  CAS  PubMed  Google Scholar 

  49. Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L (2013) Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for li-ion batteries. Electrochim Acta 114:674–679

    Article  CAS  Google Scholar 

  50. Wang Y, Liu F, Ji Y, Yang M, Liu W, Wang W, Zhang QSZ, Zhao X, Liu X (2015) Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors. Dalton Trans 44:10431–10437

    Article  CAS  PubMed  Google Scholar 

  51. Salunkhe RR, Hsu SH, Wu CWK, Yamauchi Y (2014) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. Chem Sus Chem 7:1551–1556

    Article  CAS  Google Scholar 

  52. Nandi D, Ghosh AK, Gupta K, De A, Sen P, Duttachowdhury A, Ghosh UC (2012) Polypyrrole-titanium(IV) doped iron(III) oxide composites: synthesis, characterization with tunable electrical and electrochemical properties. Mater Res Bull 47:2095–2103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are pleased to express their gratitude to the college management, for providing laboratory facilities to carry out this work. The author MSR is grateful to VGST, GOK for providing funding for research. The authors are grateful to DST-FIST for providing financial support under the research grant scheme (Project No SR/FST/ETT-378/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Raghu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghu, M.S., Kumar, K.Y., Rao, S. et al. Fabrication of polyaniline–few-layer MoS2 nanocomposite for high energy density supercapacitors. Polym. Bull. 75, 4359–4375 (2018). https://doi.org/10.1007/s00289-017-2267-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2267-9

Keywords

Navigation