Log in

Enhanced electrochemical performance of MoS2/PPy nanocomposite as electrodes material for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of efficient energy storage materials is crucial to the future renewable energy infrastructure. In this work, molybdenum disulfide/polypyrrole (MoS2/PPy) nanocomposites are synthesized in a facile hydrothermal process, where in situ oxidation polymerization of pyrrole occurs in the presence of MoS2 suspension, for their use as supercapacitor electrodes. The layered MoS2 structure serves as 2D conductive skeleton to facilitate the mobility of protons in and out from the nanocomposites, making it easily accessible and shortening the path length for electrolyte ions transport. Further, the electrochemical performance was evaluated by cyclic voltammogram, electrochemical impedance spectroscopy and galvanostatic charge/discharge, electrochemical stability, Ragone plot and cycling process. The MoS2/PPy electrode exhibits high specific capacitance of 654Fg−1 and significantly retains its 95% performance after 500 cycles at a current density of 3Ag−1significantly higher than its pristine counterparts. The improved performance of the hybrid nanocomposites due to layered MoS2 imparts the necessary space for ions during charge–discharge and stability to polymeric backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Zhang, J. Li, F. Kang, F. Gao, X. Wang, Inter. J. Hydro Energy 37, 860 (2012)

    Article  CAS  Google Scholar 

  2. A.S. Lemine, M.M. Zagho, T.M. Altahtamouni, N. Bensalah, Inter. J. Energy Res. 42, 1–17 (2018)

    Article  Google Scholar 

  3. T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, Scientific Rep. 8, 640 (2018)

    Article  Google Scholar 

  4. M.F. Iqbal, M.N. Ashiq, M. Hassan, R. Nawaz, A. Masood, A. Razaq, Energy 159, 151 (2018)

    Article  CAS  Google Scholar 

  5. P. Xu, J. Liu, P. Yan, C. Miao, K. Ye, K. Cheng, J. Yin, D. Cao, K. Li, G. Wang, J. Mater. Chem. A 4, 4920 (2016)

    Article  CAS  Google Scholar 

  6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011(6), 147 (2011)

    Article  Google Scholar 

  7. Y.G. Zhou, Z.G. Wang, P. Yang, X.T. Zu, L. Yang, X. Sun, F. Gao, ACS Nano 6, 9727 (2012)

    Article  CAS  Google Scholar 

  8. H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13, 3447 (2013)

    Article  CAS  Google Scholar 

  9. Y.D. Ma, Y. Dai, M. Guo, C.W. Niu, Y.T. Zhu, B.B. Huang, ACS Nano 6, 1695 (2012)

    Article  CAS  Google Scholar 

  10. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  CAS  Google Scholar 

  11. J. Brivio, D. Alexander, A. Kis, Nano Lett. 11, 5148 (2011)

    Article  CAS  Google Scholar 

  12. H.Y. Chang, S. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N. Lu, D. Akinwande, ACS Nano 7, 5446 (2013)

    Article  CAS  Google Scholar 

  13. E.S. Kadantsev, P. Hawrylak, Solid State Comm. 152, 913 (2012)

    Article  Google Scholar 

  14. K.J. Huang, L. Wang, Y.J. Liu, H.B. Wang, Y.M. Liu, L.L. Wang, Electrochim. Act. 109, 594 (2013)

    Article  Google Scholar 

  15. G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, J. Power Sour. 229, 78 (2013)

    Article  Google Scholar 

  16. J.M. Soon, K.P. Loh, Electro. Sol. State Lett. 10, 250 (2007)

    Article  Google Scholar 

  17. K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, Mater. Res. Bull. 50, 499 (2014)

    Article  CAS  Google Scholar 

  18. S. Roldán, D. Barreda, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Phys. Chem. Chem. Phys. 17, 1092 (2015)

    Article  Google Scholar 

  19. H. **a, W. **ao, M.O. Lai, L. Lu, Nano. Res. Let. 4, 1035 (2009)

    Article  CAS  Google Scholar 

  20. J.Y. Lei, Z.C. Li, X.F. Lu, W. Wang, X.J. Bian, T. Zheng, Y.P. Xue, C. Wang, J. Colloid Interface Sci. 2011364, 555 (2011)

    Article  Google Scholar 

  21. J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, J. Power Sour. 158, 772 (2006)

    Article  Google Scholar 

  22. K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.-B. Wang, T. Gan, L.-L. Wang, Int. J. Hydro. Energy. 38, 14027 (2013)

    Article  CAS  Google Scholar 

  23. C. Hao-Hsiang, C. Chih-Kai, T. Yu-Chen, L. Chien-Shiun, Carbon 50, 2331 (2012)

    Article  Google Scholar 

  24. A. Lewandowski, M. Zajder, E. Frackowiak, Electrochim. Act. 46, 2777 (2001)

    Article  CAS  Google Scholar 

  25. K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Electrochim. Act. 132, 397 (2014)

    Article  CAS  Google Scholar 

  26. Y. Chen, W. Ma, K. Cai, C. Huang, Electrochim. Act. 246, 615 (2017)

    Article  CAS  Google Scholar 

  27. M. Maqsood, S. Afzal, A. Shakoor, N.A. Niaz, A. Majid, N. Hassan, H. Kanwal, J. Mater. Sci. 29, 16080 (2018)

    CAS  Google Scholar 

  28. H. Liu, F. Zhang, W. Li, X. Zhang, C. Lee, Electrochim. Act. 167, 138 (2015)

    Article  Google Scholar 

  29. D. Zhang, Yu Chen, P. Wang, J. Power Sour. 196, 5990 (2011)

    Article  CAS  Google Scholar 

  30. C. Xu, J. Sun, L. Gao, J. Mater. Chem. 21, 11253 (2011)

    Article  CAS  Google Scholar 

  31. S.-M. Ali, S.-I. Esmaiel, P. Martin, Nanoscale 9, 8052 (2017)

    Article  Google Scholar 

  32. G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low, C. Teng, Y. Zheng, J. Am. Chem. Soc. 137, 6152 (2015)

    Article  CAS  Google Scholar 

  33. L. Jiangtian, Z. Wei, F. Huang, A. Manivannanc, W. Nianqiang, Nanoscale 3, 5103 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Niaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niaz, N.A., Shakoor, A., Imran, M. et al. Enhanced electrochemical performance of MoS2/PPy nanocomposite as electrodes material for supercapacitor applications. J Mater Sci: Mater Electron 31, 11336–11344 (2020). https://doi.org/10.1007/s10854-020-03682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03682-3

Navigation