Log in

Cascaded Terahertz Parametric Generation Under Noncollinear Phase-Matching Condition

  • Research
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We directly observed terahertz (THz) waves generated in a cascading manner under noncollinear phase-matching conditions in a THz parametric generator. Although cascading induced by collinear phase matching has been extensively studied, cascading featuring noncollinear phase matching, using devices such as our injection-seeded THz parametric generator (is-TPG), has received less attention. However, an understanding of is-TPG cascading is required not only for the further development of THz-wave sources but also for THz-range parametric detection and amplification; direct observations are essential. Here, we used a high-power seed beam to induce cascading efficiently; when the crystal was tilted, we detected new higher-order THz waves near the end face. To the best of our knowledge, no previous study has described THz waves generated by cascading under noncollinear phase-matching conditions. We present empirical data that will greatly aid the theoretical exploration of parametric TH-wave generation. Our work paves the way toward enhancement of the output powers of THz sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. W. Jolly, N. H. Matlis, F. Ahr, V Leroux, T. Eichner, A. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, A. R. Maier, Nat. Commun. 10, 2591 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. Y. Takida, K. Nawata, H. Minamide, APL Photonics 5, 061301 (2020).

    Article  ADS  CAS  Google Scholar 

  3. B. S. Dastrup, E. R. Sung, F. Wulf, C. Saraceno, K. A. Nelson, Light Sci. Appl. 11, 335 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  4. K. Nawata, Y. Tokizane, Y. Takida, H. Minamide, Sci. Rep. 9, 1 (2019).

    Article  CAS  Google Scholar 

  5. K. Ravi, F. X. Kärtner, Laser Photonics Rev. 14, 2000109 (2020).

    Article  ADS  CAS  Google Scholar 

  6. H. T. Olgun, W. Tian, G. Cirmi, K. Ravi, C. Rentschler, H. Çankaya, M. Pergament, M. Hemmer, Y. Hua, D. N. Schimpf, N. H. Matlis, F. X. Kärtner, Opt. Lett. 47, 2374 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  7. H. Hirori, A. Doi, F. Blanchard, K. Tanaka, Appl. Phys. 98, 091106 (2011).

    ADS  Google Scholar 

  8. K. Murate, M. J. Roshtkhari, X. Ropagnol, F. Blanchard, Opt. Lett. 43, 2090 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, J. Infrared Millim. Terahertz Waves 35, 25 (2014).

    Article  CAS  Google Scholar 

  10. A. J. Lee, H. M. Pask, Opt. Express 23, 8687 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  11. W. Li, F. Qi, P. Liu, Y. Wang, Z. Liu, Opt. Lett. 47, 178 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  12. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, H. Minamide, Sci. Rep. 4, 1, (2014).

    Google Scholar 

  13. K. Murate, K. Kawase, J. Appl. Phys. 124, 160901 (2018).

    Article  ADS  Google Scholar 

  14. R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, Appl. Phys. 93, 021106 (2008).

    Article  ADS  Google Scholar 

  15. K. Murate, S. Hayashi, K. Kawase, Appl. Phys. Express 9, 082401 (2016).

    Article  ADS  Google Scholar 

  16. L. Tang, D. Xu, Y. Wang, C. Yan, Y. Hen, K. Zhong, J. Yao, Opt. Express 27, 22808 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. S. Mine, K. Kawase, K. Murate, Opt. Lett. 47, 1113 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  18. G. K. Kitaeva, V. V. Kornienko, A. A. Leontyev, A. V. Shepelev, Phys. Rev. A 98, 063844 (2018).

    Article  ADS  CAS  Google Scholar 

  19. R. Zhang, L. Geng, Z. Zhang, Y. Zhai, S. Peng, F. Zhai, K. Yang, J. Infrared Milli. Terahz. Waves 42, 851 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Authors appreciate the fruitful discussions with Dr. S. Hayashi of NICT.

Funding

This work was partially supported by Japan Science and Technology Agency (JST) FOREST Program (JPMJFR212J); Japan Society for the Promotion of Science KAKENHI (19H02627, 22H00212, 22J20963); Foundation of Public Interest of Tatematsu; The Naito Science and Engineering Foundation; and Konica Minolta Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.M.; methodology, S.M. and K.M.; formal analysis, S.M.; data curation, S.M. and K.M.; writing—original draft preparation, S.M. and K.M.; writing—review and editing, K.K and K.M.; visualization, S.M. and K.M.; supervision, K.M.; project administration, K.M.; funding acquisition, K.K. and K.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sota Mine.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mine, S., Kawase, K. & Murate, K. Cascaded Terahertz Parametric Generation Under Noncollinear Phase-Matching Condition. J Infrared Milli Terahz Waves 45, 116–123 (2024). https://doi.org/10.1007/s10762-023-00962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-023-00962-x

Keywords

Navigation