Log in

Widely Tunable Terahertz-Wave Parametric Oscillator with a Shallow Surface Cross-pump Configuration

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

An efficient and widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) with a very narrow linewidth is demonstrated by using a shallow surface cross-pump configuration. The shallow surface cross-pum** form was realized by totally reflect the pump beam at the THz-wave exit surface. Widely THz-wave tuning range of 0.6–3.9 THz is realized with a 1-mm diameter pump, and the high-frequency end even reached 5.5 THz with a 2-mm diameter pump to increase the nonlinear gain length. The measured Stokes linewidth was 0.07 nm, which is compressed by 70% for that of the conventional TPOs. The highest THz-wave output energy of 2.4 μJ was achieved at 2 THz under 15 mJ pum**, corresponding to an energy conversion efficiency of 1.6 × 10−4. The mechanism of the frequency-selection effect in cross-pumped stimulated polariton scatterings was discussed by calculating the single-pass parametric gain for different phase mismatches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen and X. C. Zhang. Terahertz Spectroscopy and Imaging for Defense and Security Applications, Proc. IEEE 95 (2007) 1514–1527 https://ieeexplore.ieee.org/document/4337845.

  2. K. Murate, and K. Kawase. Perspective: Terahertz wave parametric generator and its applications, Journal of Applied Physics 124 (2018) 160901 https://doi.org/10.1063/1.5050079.

    Article  Google Scholar 

  3. S. Jiang, X. Chen, Z. Cong, X. Zhang, Z. Qin, Z. Liu, W. Wang, N. Li, Q. Fu, Q. Lu, and S. Zhang. Tunable Stokes laser generation based on the stimulated polariton scattering in KTiOPO4 crystal, Optics Express 23 (2015) 20187-20194 https://doi.org/10.1364/OE.23.020187.

    Article  Google Scholar 

  4. S. Hayashi, K. Nawata, Y. Takaida, Y. Tokizane, K. Kawase, and H. Minamide, High-Brightness Continuously Tunable Narrowband Subterahertz Wave Generation, IEEE Transactions on Terahertz Science and Technology, 6(2016) 858-861 https://doi.org/10.1109/TTHZ.2016.2611939.

    Article  Google Scholar 

  5. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, Q. Lu, Terahertz parametric oscillator based on KTiOPO4 crystal, Opt. Lett. 39 (2014) 3706–3709 https://doi.org/10.1364/OL.39.003706.

    Article  Google Scholar 

  6. T. A. Ortega, H. M. Pask, D. J. Spence and A. J. Lee. Tunable 3–6 THz polariton laser exceeding 0.1 mW average output power based on crystalline RbTiOPO4, IEEE Journal of Selected Topics in Quantum Electronics 24 (2018) 5100806 https://ieeexplore.ieee.org/document/8304638.

  7. F. Gao, X. Zhang, Z. Cong, Z. Qin, X. Chen, Z. Liu, J. Lu, Y. Li, J. Zang, D. Wu, C. Jia, Y. Jiao, S. Zhang, Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal, Optic Laser. Technol. 104 (2018) 37–42 https://doi.org/10.1016/j.optlastec.2018.02.009

    Article  Google Scholar 

  8. K. Murate, S. Hayashi and K. Kawase, Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz. Appl. Phy. Express 9 (2016) 082401 https://iopscience.iop.org/article/10.7567/APEX.9.082401.

  9. Y. Zheng, A. Lee, D. Spence, H. Pask, Linewidth-narrowing of a continuous wave terahertz polariton laser using an intracavity etalon, Opt. Lett. 45 (2020) 157–160 https://doi.org/10.1364/OL.45.000157.

    Article  Google Scholar 

  10. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, H. Minamide, Ultrabright continuously tunable terahertz-wave generation at room temperature, Sci. Rep. 4 (2014) 5045. https://doi.org/10.1038/srep05045.

    Article  Google Scholar 

  11. A. Lee, Y. He, H. Pask, Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3, IEEE J. Quantum Electron. 49 (2013) 357–364 https://ieeexplore.ieee.org/document/6451099.

  12. A. Lee, H. Pask, Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering, Opt. Lett. 39 (2014) 442-445 https://doi.org/10.1364/OL.39.000442.

    Article  Google Scholar 

  13. Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, H. Minamide, High-average and high-peak output-power terahertz-wave generation by optical parametric down-conversion in MgO:LiNbO3, Appl. Phys. Lett. 113 (2018) 121103 https://aip.scitation.org/doi/10.1063/1.5046126.

  14. R. Zhang, Y. Qu, W. Zhao, C. Liu, Z Chen, Si-prism-array coupled terahertz-wave parametric oscillator with pump light totally reflected at the terahertz-wave exit surface, Opt. Lett. 41 (2016) 4016-4019 https://doi.org/10.1364/OL.41.004016.

    Article  Google Scholar 

  15. A. Lee, H. Pask, Cascaded stimulated polariton scattering in a Mg:LiNbO3 terahertz laser, Opt. Express 23 (2015) 8687-8698 https://doi.org/10.1364/OE.23.008687.

    Article  Google Scholar 

  16. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, Q. Lu, THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal, Opt. Express 22 (2014) 17092–17098 https://doi.org/10.1364/OE.22.017092.

    Article  Google Scholar 

  17. Y. R. Shen. Nonlinear Infrared Generation. (Springer-Verlag, 1977), pp. 105–140

  18. S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford University, 1970).

  19. K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal, IEEE Trans. Terahertz Sci. Technol. 7 (2017) 617–620 https://ieeexplore.ieee.org/document/7984855.

Download references

Funding

This research is supported by the National Natural Science Foundation of China (NSFC) (61905223, 11904327), and the Henan Science and Technology Development Plan Project (182102310616, 202102210318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Geng, L., Zhang, Z. et al. Widely Tunable Terahertz-Wave Parametric Oscillator with a Shallow Surface Cross-pump Configuration. J Infrared Milli Terahz Waves 42, 851–862 (2021). https://doi.org/10.1007/s10762-021-00816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00816-4

Keywords

Navigation