Log in

High-efficiency terahertz generation combined with cavity phase matching and quasi-phase matching

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

High-efficiency terahertz generation by difference frequency generation (DFG) combined with cavity phase matching (CPM) and quasi-phase matching (QPM) is predicted in this paper. Numerical simulations show that the power conversion efficiency can reach a maximum value of 1.63%, which corresponds to a photon conversion efficiency of 66%. The efficiency is increased by ~ 102 times when compared with the DFG based on CPM or QPM. This phase matching method is expected to become a substitute for a single CPM or QPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Nagatsuma, G. Ducournau, C.C. Renaud, Advances in terahertz communications accelerated by photonics. Nat. Photonics 10, 371–379 (2016)

    Article  ADS  Google Scholar 

  2. H. Jabri, H. Eleuch, Dynamics in terahertz semiconductor microcavity: quantum noise spectra. J. Opt. 20, 055201 (2018)

    Article  ADS  Google Scholar 

  3. I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum PP, 1-1 (2017)

    Google Scholar 

  4. S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50, 043001 (2017)

    Article  ADS  Google Scholar 

  5. M.P. Fischer, J. Bühler, G. Fitzky, T. Kurihara, S. Eggert, A. Leitenstorfer, D. Brida, Coherent field transients below 15 THz from phase-matched difference frequency generation in 4H-SiC. Opt. Lett. 42, 2687 (2017)

    Article  ADS  Google Scholar 

  6. A.A. Boyko, P.G. Schunemann, S. Guha, N.Y. Kostyukova, D.B. Kolker, V.L. Panyutin, G.M. Marchev, V. Pasiskevicius, A. Zukauskas, F. Mayorov, Optical parametric oscillator pumped at ~ 1 µm with intracavity mid-IR difference-frequency generation in OPGaAs. Opt. Mater. Express 8, 549 (2018)

    Article  ADS  Google Scholar 

  7. I. Breunig, J.U. Fürst, K. Hanka, K. Buse, Continuous-wave optical parametric oscillation tunable up to 8 μm wavelength. Optica 4, 189 (2017)

    Article  Google Scholar 

  8. A. Billat, D. Grassani, M. Pfeiffer, S. Kharitonov, T.J. Kippenberg, C.S. Brès, Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017)

    Article  ADS  Google Scholar 

  9. R. Wolf, Y. Jia, S. Bonaus, C.S. Werner, S.J. Herr, I. Breunig, K. Buse, H. Zappe, Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5, 872 (2018)

    Article  Google Scholar 

  10. E. Rosencher, B. Vinter, V. Berger, Second-harmonic generation in nonbirefringent semiconductor optical microcavities. J. Appl. Phys. 78, 6042–6045 (1995)

    Article  ADS  Google Scholar 

  11. Z.D. **e, X.J. Lv, Y.H. Liu, W. Ling, Z.L. Wang, Y.X. Fan, S.N. Zhu, Cavity phase matching via an optical parametric oscillator consisting of a dielectric nonlinear crystal sheet. Phys. Rev. Lett. 106, 083901 (2011)

    Article  ADS  Google Scholar 

  12. H.B. Lin, S.F. Li, Y.W. Sun, G. Zhao, X.P. Hu, X.J. Lv, S.N. Zhu, High-performance cavity-phase matching by pump reflection. Opt. Lett. 38, 1957–1959 (2013)

    Article  ADS  Google Scholar 

  13. K. Saito, T. Tanabe, Y. Oyama, Pump enhanced monochromatic terahertz-wave parametric oscillator toward megawatt peak power. Opt. Lett. 39, 5681–5684 (2014)

    Article  ADS  Google Scholar 

  14. S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency. Appl. Phys. Lett. 98, 031102 (2011)

    Article  ADS  Google Scholar 

  15. Y. Lu, X. Wang, L. Miao, D. Zuo, Z. Cheng, Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser. Appl. Phys. B 103, 387–390 (2010)

    Article  ADS  Google Scholar 

  16. S. Zeng, F. **e, Z. Rao, Theoretical analysis of difference frequency generation for terahertz generation in a sheet microcavity from the CO2 laser. Optik 172, 1111–1116 (2018)

    Article  ADS  Google Scholar 

  17. R.H. Stolen, Far-infrared absorption in high resistivity GaAs. Appl. Phys. Lett. 15, 74–75 (1969)

    Article  ADS  Google Scholar 

  18. D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005), pp. 204–209

    Google Scholar 

  19. Z.-M. Rao, X.-B. Wang, Y.-Z. Lu, D.-L. Zuo, T. Wu, Two schemes for generating efficient terahertz waves in nonlinear optical crystals with a mid-infrared CO2 laser. Chin. Phys. Lett. 28, 074215 (2011)

    Article  ADS  Google Scholar 

  20. Z. Rao, X. Wang, D. Zuo, Terahertz generation in quasi-phase-matched GaAs wafers by pulse CO2laser. Proc SPIE Int Soc Opt Eng 8604, 860415 (2013)

    Google Scholar 

  21. Y. Okuno, K. Uomi, M. Aoki, T. Tsuchiya, Direct wafer bonding of III-V compound semiconductors for free-material and free-orientation integration. IEEE J. Quantum Electron. 33, 959–969 (1997)

    Article  ADS  Google Scholar 

  22. T. Skauli, P.S. Kuo, K.L. Vodopyanov, T.J. **uet, O. Levi, L.A. Eyres, J.S. Harris, M.M. Fejer, B. Gerard, L. Becouarn, E. Lallier, Improved dispersion relations for GaAs and applications to nonlinear optics. J. Appl. Phys. 94, 6447–6455 (2003)

    Article  ADS  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (NSFC, No. 11664017) and Science and Technology Project funded by Provincial Department of Education (No. GJJ160305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., **e, F. & Rao, Z. High-efficiency terahertz generation combined with cavity phase matching and quasi-phase matching. J Opt 48, 129–133 (2019). https://doi.org/10.1007/s12596-019-00511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00511-7

Keywords

Navigation