Log in

Five years after the collapse of the Fundão Dam: lessons from temporal monitoring of chemistry and acute toxicity

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In November 2015, the Fundão Dam break released millions of tons of metal-rich tailings into the Doce River Basin (DRB), causing catastrophic damage and potential ecological effects that reached the Atlantic Ocean. This study aimed to evaluate the geochemistry and toxicity of water and sediments collected in the DRB from 2015 to 2019 and to determine the spatial and temporal trends. Water and sediment samples were analyzed for metals and As by inductively coupled plasma optical emission spectrometry (ICP-OES), and acute toxicity for Daphnia similis or D. magna. Results were explored using geochemical indices and correlation analyzes. Overall, higher concentrations of metals and As in water and sediments were observed immediately after dam breakage, but the levels exhibited a decreasing trend over time, although the levels of some elements such as As and Mn remained high in the upper DRB. The geochemical indices indicated mostly low to moderate contamination, and the enrichment factor (EF) demonstrated a higher enrichment of Mn in the upper DRB. Acute toxicity to water fleas (D. similis and D. magna) was occasionally observed in waters and sediments, but the reference samples were toxic, and the short-term effects were not correlated with metals and As. Overall, the results showed limited bioavailability of metals and As and a decreasing trend in their concentrations, indicating an ongoing recovery process in DRB. These results are important to decision-making regarding the disaster and actions for environmental restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. Part of raw results is available as SM in https://doi.org/10.1002/ieam.4773, as mentioned.

References

  • Abessa, D. M. S., Morais, L. G., Perina, F. C., Davanso, M. B., Buruaem, L. M., Martins, L. M. P., Sígolo, J. B., Rodrigues, V. G. S. (2012). Toxicidade de águas e sedimentos em um rio afetado por atividades mineradoras pretéritas. O Mundo da Saúde, 36(4), 610-618. http://www.saocamilo-sp.br/pdf/mundo_saude/97/10.pdf

  • ABNT - Associação Brasileira de Nortmas Técnicas (2016). NBR 12713. Ecotoxicologia aquática — Toxicidade aguda — Método de ensaio com Daphnia spp (Crustacea, Cladocera) Aquatic. Associação Brasileira de Normas Técnicas, 4o Edição, 1–23. Retrieved from http://revistas.ufpr.br/pesticidas/article/view/7483

  • Almeida, C. A., de Oliveira, A. F., Pacheco, A. A., Lopes, R. P., Neves, A. A., Ribeiro, L., & de Queiroz, M. E. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Doce River basin – Brazil. Chemosphere, 209, 411–420. https://doi.org/10.1016/j.chemosphere.2018.06.071

    Article  ADS  PubMed  CAS  Google Scholar 

  • ANA - Agência Nacional de Águas. (2016). Encarte especial sobre a Bacia do Rio Doce. Rompimento da barragem em Mariana/MG. In: Conjuntura dos Recursos Hídricos no Brasil (Vol. 1). Brasilia - DF.

  • Arantes, I. A., Pinto, M. T. C., Mangabeira, P. A., Grenier-Loustalot, M. F., Veado, M. A. R. V., & Oliveira, A. H. (2009). Mercury concentration in fish from Piracicaba River (Minas Gerais, Brazil). Environmental Monitoring and Assessment, 156(1–4), 119–130. https://doi.org/10.1007/s10661-008-0468-2

    Article  PubMed  CAS  Google Scholar 

  • Bernardino, A. F., Pais, F. S., Oliveira, L. S., Gabriel, F. A., Ferreira, T. O., Queiroz, H. M., & Mazzuco, A. C. A. (2019). Chronic trace metals effects of mine tailings on estuarine assemblages revealed by environmental DNA. PeerJ, 2019(11), 1–18. https://doi.org/10.7717/peerj.8042

    Article  CAS  Google Scholar 

  • Borba, R. B., Figueiredo, B. R., & Matschullat, J. (2003). Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology, 44, 39–52. https://doi.org/10.1007/s00254-003-0766-5

    Article  CAS  Google Scholar 

  • Brasil (2015). Laudo Técnico Preliminar: Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA, Minas Gerais.

  • Brasil, República Federativa (2005). Resolução CONAMA n° 357, 18 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, (053), 58–63. https://www.mma.gov.br/port/conama/res/res05/res35705.pdf (accessed on March 28, 2020)

  • Brasil, República Federativa (2012). Resolução No. 454/12. Estabelece as diretrizes gerais e os procedimentos referenciais para o gerenciamento do material a ser dragado em águas sob jurisdição nacional. CONAMA. Brasília, DF. Available at https://www.ibama.gov.br/component/legislacao/?view=legislacao&legislacao=128537. Accessed 5 Feb 2024.

  • Buratini, S. V., Bertoletti, E., & Zagatto, P. A. (2004). Evaluation of Daphnia similis as a test species in ecotoxicological assays. Bulletin of Environmental Contamination and Toxicology, 73(5), 878–882. https://doi.org/10.1007/s00128-004-0508-8

    Article  PubMed  CAS  Google Scholar 

  • Buruaem, L. M., de Castro, Í. B., Hortellani, M. A., Taniguchi, S., Fillmann, G., Sasaki, S. T., Petti, M. A. V., Sarkis, J. E. S., Bicego, M. C., Maranho, L. A., Davanso, M. B., Nonato, E. F., Cesar, A., Costa-Lotudo, L. V., & Abessa, D. M. S. (2013). Integrated quality assessment of sediments from harbour areas in Santos-São Vicente Estuarine System, Southern Brazil. Estuarine, Coastal and Shelf Science, 130, 179–189. https://doi.org/10.1016/j.ecss.2013.06.006

    Article  ADS  Google Scholar 

  • Cagnin, R. C., Quaresma, V. S., Chaillou, G., Franco, T., & Bastos, A. C. (2017). Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Science of the Total Environment, 60. https://doi.org/10.1016/j.scitotenv.2017.06.162

  • CETESB - Companhia Ambiental do Estado de São Paulo. (1995). Norma técnica L6.160 de Nov/1995. Sedimentos: determinação da distribuição granulométrica - método de ensaio (p. 15). São Paulo

  • Coelho, A. (2009). Bacia hidrográfica do Rio Doce (MG/ES): uma análise socioambiental integrada. Revista Geogreafares, 7, 131–146. https://doi.org/10.7147/GEO7.156

    Article  Google Scholar 

  • Costa, A. T., Nalini, H. A., Castro, P. T. A., & Tatumi, S. H. (2010). Stratigraphic analysis and distribution of arsenic in quaternary sedimentary deposits of the southeastern portion of the Quadrilátero Ferrífero, basin of the Ribeirão Carmo, MG. Revista Escola de Minas, 63(4), 703–714. https://doi.org/10.1590/s0370-44672010000400017

    Article  Google Scholar 

  • Costa, A. T., Nalini, H. A., Jr., Castro, P. T. A., Lena, J. C., Morgenstern, P., & Friese, K. (2006). Sediment contamination in floodplains and alluvial terraces as an historical record of gold exploitation in the Carmo River basin, Southeast Quadrilátero Ferrífero, Minas Gerais, Brazil. Acta Hydrochimica et Hydrobiologica, 34(3), 245–256. https://doi.org/10.1002/aheh.200400625

    Article  CAS  Google Scholar 

  • Costa, P. G., Marube, L. C., Artifon, V., Escarrone, A. L., Hernandes, J. C., Zebral, Y. D., & Bianchini, A. (2022). Temporal and spatial variations in metals and arsenic contamination in water, sediment and biota of freshwater, marine and coastal environments after the Fundão dam failure. Science of the Total Environment, 806(151340). https://doi.org/10.1016/j.scitotenv.2021.151340

  • Davila, R. B., Fontes, M. P. F., Pacheco, A. A., & da Ferreira, M. S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 709, 136151. https://doi.org/10.1016/j.scitotenv.2019.136151

    Article  ADS  PubMed  CAS  Google Scholar 

  • de Gomes, L. E. O., Correa, L. B., Sá, F., Neto, R. R., & Bernardino, A. F. (2017). The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Marine Pollution Bulletin, 120(1–2), 28–36. https://doi.org/10.1016/j.marpolbul.2017.04.056

    Article  PubMed  CAS  Google Scholar 

  • de Rodrigues, A. S. L., Malafaia, G., Costa, A. T., & Nalini, H. A. (2013). Evaluation of the mineral exploration influence on sediment composition in the Gualaxo do Norte River Basin (MG-Brazil) based on geochemical and stratigraphic data. Environmental Earth Sciences, 68(4), 965–972. https://doi.org/10.1007/s12665-012-1799-4

    Article  ADS  CAS  Google Scholar 

  • Duarte, E. B., Neves, M. A., de Oliveira, F. B., Martins, M. E., de Oliveira, C. H. R., Burak, D. L., et al. (2021). Trace metals in Rio Doce sediments before and after the collapse of the Fundão iron ore tailing dam, Southeastern Brazil. Chemosphere, 262, 127879. https://doi.org/10.1016/j.chemosphere.2020.127879

    Article  PubMed  CAS  Google Scholar 

  • Fontecave, M., & Pierre, J. L. (1993). Iron: Metabolism, toxicity and therapy. Biochimie, 75(9), 767–773. https://doi.org/10.1016/0300-9084(93)90126-D

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer, G. J., & Horowitz, A. J. (1989). The vertical distribution of selected trace metals and organic compounds in bottom materials of the proposed Lower Columbia River Export Channel, Oregon, 1984. U.S. Geological Survey Water-Resources Investigations Report 88-4099.

  • Galuszka, A. (2007). Different approaches in using and understanding the term ― Geochemical Backgroun‖- pratical implications for environmental studies. Polish Journal of Environmental Studies, 16(3), 389–395.

    Google Scholar 

  • GIAIA. (2016). Relatório-Técnico Determinação De Metais Na Bacia Do Rio Doce (Período: Dezembro-2015 a Abril-2016), 1–71.

  • Guerra, M. B. B., Teaney, B. T., Mount, B. J., Asunskis, D. J., Jordan, B. T., Barker, R. J., Santos, E., E., Schaefer, C. E. G. R. (2017). Postcatastrophe analysis of the Fundão tailings dam failure in the Doce River system, southeast Brazil: potentially toxic elements in affected soils. Water Air & Soil Pollution, 228, 252. https://doi.org/10.1007/s11270-017-3430-5

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 1(4), 1–9.

    Google Scholar 

  • Hatje, V., Pedreira, R. M. A., De Rezende, C. E., Schettini, C. A. F., De Souza, G. C., Marin, D. C., & Hackspacher, P. C. (2017). The environmental impacts of one of the largest tailing dam failures worldwide. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11143-x

  • IBAMA. (2015). Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Laudo Técnico Preliminar, 1, 2–35 http://www.ibama.gov.br/phocadownload/noticias_ambientais/laudo_tecnico_preliminar.pdf

    Google Scholar 

  • IGAM. (2020). Encarte Especial Sobre a Qualidade Das Águas Do Rio Doce Após 4 Anos Do Rompimento De Barragem De Fundão -2015/2019 http://www.igam.mg.gov.br/images/stories/2020/QUALIDADE_AGUAS/Encarte_4_anos_-_Desastre_Doce_-_Final.pdf, 77. http://www3.ana.gov.br/portal/ANA/sala-de-situacao/rio-doce/documentos-relacionados/encarte-qualidade-da-gua-do-rio-doce-dois-anos-apos-rompimento-de-barragem-de-fundao-1.pdf

  • IGAM - Instituto Mineiro de Gestão das Águas. (2015). Acompanhamento da Qualidade das Águas do Rio Doce Após o Rompimento da Barragem da Samarco no distrito de Bento Rodrigues – Mariana/MG.

  • IGAM - Instituto Mineiro de Gestão das Águas. (2017). Encarte Especial Sobre a Qualidade das Águas do Rio Doce após 2 Anos do Rompimento de Barragem de Fundão -2015/2017, 2. Retrieved from http://www3.ana.gov.br/portal/ANA/sala-de-situacao/rio-doce/documentosrelacionados/encarte-qualidade-da-gua-do-rio-doce-dois-anos-apos-rompimento-de-barragem-de-fundao-1.pdf.

  • Kim, H. J., Koedrith, P., & Seo, Y. R. (2015). Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. International Journal of Molecular Sciences, 16, 12261–12287. https://doi.org/10.3390/ijms160612261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lacerda, F. M., & Roeser, H. M. P. (2014). Análise geoquímica e ambiental para descrição da Bacia do Rio Oratórios (MG). Geochimica Brasiliensis, 28(2), 227–236. https://doi.org/10.5327/Z0102-9800201400020010

    Article  CAS  Google Scholar 

  • Liccardo, A., Sobanski, A., & Chodur, N. L. (2004). O Paraná na história da mineração no Brasil do século XVII. Boletim Paranaense de Geociências, 54, 41–49. https://doi.org/10.5380/geo.v54i0.4251

    Article  Google Scholar 

  • Lins, F. A. F., Loureiro, F. E. V. L., Albuquerque, G. A. A. S. C. (2000). Brasil 500 anos - A construção do Brasil e da América Latina: histórico, atualidade e perspectiva. centro de Tecnologia Mineral, RJ, pp. 254.

  • Long, E. R., & Chapman, P. M. (1985). A sediment quality triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Marine Pollution Bulletin, 16(10), 405–415. https://doi.org/10.1016/0025-326X(85)90290-5

    Article  CAS  Google Scholar 

  • Luczak, C., Janquin, M. A., & Kupka, A. (1997). Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia, 345(1), 87–94. https://doi.org/10.1023/A:1002902626798

    Article  CAS  Google Scholar 

  • Macêdo, A. K. S., Santos, K. P. E., Brighenti, L. S., Windmöller, C. C., Barbosa, F. A. R., de Ribeiro, R. I. M. A., et al. (2020). Histological and molecular changes in gill and liver of fish (Astyanax lacustris Lütken, 1875) exposed to water from the Doce basin after the rupture of a mining tailings dam in Mariana, MG, Brazil. Science of the Total Environment, 735. https://doi.org/10.1016/j.scitotenv.2020.139505

  • Macklin, M. G., Brewer, P. A., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., & Zaharia, S. (2003). The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramureş County, upper Tisa Basin, Romania. Applied Geochemistry, 18(2), 241–257. https://doi.org/10.1016/S0883-2927(02)00123-3

    Article  ADS  CAS  Google Scholar 

  • Marta-Almeida, M., Mendes, R., Amorim, F. N., Cirano, M., & Dias, J. M. (2016). Fundão Dam collapse: Oceanic dispersion of River Doce after the greatest Brazilian environmental accident. Marine Pollution Bulletin, 112(1–2), 359–364. https://doi.org/10.1016/j.marpolbul.2016.07.039

    Article  PubMed  CAS  Google Scholar 

  • Mendes, L. B., Mello, F. A., Chagas, K. R., Campelo, R. P. M., Medeiros, L. C. C., Smith, R. E. W., & Furley, T. H. (2020). Ecotoxicological assessment of the Doce River surface water after the Fundão dam collapse. Integrated Environmental Assessment and Management, 0–2. https://doi.org/10.1002/ieam.4291

  • Mendes, R. G., Valle Junior, R. F., Silva, M. M. A. P. M., Fernandes, G. H. M., Fernandes, L. F. S., Fernandes, A. C. P., Pissarra, T. C. T., Melo, M. C., Valera, C. A., & Pacheco, F. A. L. (2022). A partial least squares-path model of environmental degradation in the Paraopeba River, for rainy seasons after the rupture of B1 tailings dam, Brumadinho, Brazil. Science of the Total Environment, 851(Part 1), 158248. https://doi.org/10.1016/j.scitotenv.2022.158248

    Article  ADS  PubMed  CAS  Google Scholar 

  • Meng, Y., Wu, J., Li, P., & Wang, Y. (2023). Distribution characteristics, source identification and health risk assessment of trace metals in the coastal groundwater of Taizhou City, China. Environmental Research, 238, 117085. https://doi.org/10.1016/j.envres.2023.117085

    Article  ADS  PubMed  CAS  Google Scholar 

  • Morais, L. G., Perina, F. C., Davanso, M. B., Buruaem, L. M., Rodrigues, V. G. S., Sígolo, J. B., & Abessa, D. M. S. (2013). Water and sediment ecotoxicological assessment in a river affected by former mining activities. Pan-American Journal of Aquatic Sciences, 8(4), 327–338.

    Google Scholar 

  • Muller, G. (1979). Schadstoffe in Sedimenten - Sedimente als Schadstoffe. Umschau in Wissenschaft und Technik, 79(24), 778–783.

    Google Scholar 

  • Nogueira, L. B., Sousa, S. M., Santos, C. G. L., Araújo, G. S., Oliveira, L., & Nogueira, K. O. P. C. (2021). Water quality from gualaxo do Norte and Carmo Rivers (Minas Gerais, Brazil) after the fundão dam failure. Anuario Do Instituto de Geociencias, 44, 1–11. https://doi.org/10.11137/1982-3908_2021_44_37175

    Article  Google Scholar 

  • Oliveira, J. J. C., Ribeiro, J. H., Souza Oki S., Barros, J. R. R. (1979) Projeto geoquímica do Quadrilátero Ferrífero: levantamento orientativo e regional. Relatório final, vol I. CPRM, Belo Horizonte. https://rigeo.sgb.gov.br/handle/doc/7972.

  • Oliveira, K. S. S., & Quaresma, V. S. (2017). Temporal variability in the suspended sediment load and streamflow of the Doce River. Journal of South American Earth Science, 78, 101–115. https://doi.org/10.1016/j.jsames.2017.06.009

    Article  ADS  Google Scholar 

  • Omachi, C. Y., Siani, S. M. O., Chagas, F. M., Mascagni, M. L., Cordeiro, M., Garcia, G. D., Thompson, C. C., Siegle, E., & Thompson, F. L. (2018). Atlantic Forest loss caused by the world’s largest tailing dam collapse (Fundão Dam, Mariana, Brazil). Remote Sensing Applications: Society and Environment, 12, 30–34. https://doi.org/10.1016/j.rsase.2018.08.003

    Article  Google Scholar 

  • Parra, R. R., Pereira, J. C., & Friese, K. (2007). Influência antrópica na geoquímica de água e sedimentos do Rio Conceição, Quadrilátero Ferrífero, Minas Gerais - Brasil. Geochimica Brasiliensis, 21(1), 36–49.

    Google Scholar 

  • Passos, L. S., Gnocchi, K. G., Pereira, T. M., Coppo, G. C., Cabral, D. S., & Gomes, L. C. (2020). Is the Doce River elutriate or its water toxic to Astyanax lacustris (Teleostei: Characidae) three years after the Samarco mining dam collapse? Science of the Total Environment, 736, 139644. https://doi.org/10.1016/j.scitotenv.2020.139644

    Article  ADS  PubMed  CAS  Google Scholar 

  • Pedreira, G., & Sousa, H. C. (2011). Comunidade arbórea de uma mancha florestal permanentemente alagada e de sua vegetação adjacente em Ouro Preto-MG, Brasil. Ciência Florestal, 21(4), 663–675. https://doi.org/10.5902/198050984511

    Article  Google Scholar 

  • Petesse, M. L., Pomaro, S. B., & de Castro Campanha, P. M. G. (2023). Are fish assemblages recovering after the huge disaster of mining tailing dam collapse in Mariana (Brazil-MG)? Environmental Monitoring and Assessment, 195(11), 1263. https://doi.org/10.1007/s10661-023-11883-6

    Article  PubMed  Google Scholar 

  • Queiroz, H. M., Ying, S. C., Abernathy, M., Barcellos, D., Gabriel, F. A., Otero, X. L., Nobrega, G. M., Bernardino, A. F., & Ferreira, T. O. (2021). Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. Environment International, 146. https://doi.org/10.1016/j.envint.2020.106284

  • Richard, E. C., de Aguiar Duarte, H., Calderucio Duque Estrada, G., Bechtold, J. P., Gusso Maioli, B., Araujo de Freitas, A. H., Warner, K. E., & Melges Figueiredo, L. H. (2020). Influence of Fundão tailings dam breach on water quality in the Doce River watershed. Integrated Environmental Assessment and Management, 16(5), 583–595. https://doi.org/10.1002/ieam.4311

    Article  CAS  Google Scholar 

  • Rodgher, S., Espíndola, E. L. G., & Lombardi, A. T. (2010). Suitability of Daphnia similis as an alternative organism in ecotoxicological tests: Implications for metal toxicity. Ecotoxicology, 19, 1027–1033. https://doi.org/10.1007/s10646-010-0484-1

    Article  PubMed  CAS  Google Scholar 

  • Sá, F., Longhini, C. M., Costa, E. S., Silva, C. A., Cagnin, R. C., Gomes, L. E. O., Lima, A. T., Bernardino, A. F., & Neto, R. R. (2021). Time-sequence development of metal(loid)s following the 2015 dam failure in the Doce river estuary, Brazil. Science of the Total Environment, 769(2021), 144532. https://doi.org/10.1016/j.scitotenv.2020.144532

    Article  ADS  PubMed  CAS  Google Scholar 

  • Santana, F. C., Francelino, M. R., Schaefer, C. E. G. R., Veloso, G. V., Fernandes-Filho, E. I., Santana, A. J. P., Timo, L. B., & Rosa, A. P. (2021). Water quality of the Gualaxo do Norte and Carmo rivers after the Fundão Dam collapse, Mariana, MG. Water, Air, and Soil Pollution, 232, 155. https://doi.org/10.1007/s11270-021-05113-3

    Article  ADS  CAS  Google Scholar 

  • Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. Ú. L., Pedreira Filhp, W. R., Barbosa, F., Jr., Cerchiaro, G., Silva, F. F., & Batista, B. L. (2016). Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  PubMed  CAS  Google Scholar 

  • Shepard, F. P. (1954). Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24(3), 151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Souza, A. P. R., Braga, E. S., & Bertotti, M. (2012). On site strip** voltammetric determination of Zn(II), Cd(II) and Pb(II) in water samples of the Cananéia-Iguape Estuarine-Lagoon complex in São Paulo State, Brazil. Journal of the Brazilian Chemical Society, 23(7), 1320–1326. https://doi.org/10.1590/S0103-50532012000700017

    Article  Google Scholar 

  • Trevizani, T. H., Figueira, R. C. L., Ribeiro, A. P., Theophilo, C. Y. S., Majer, A. P., Petti, M. A. V., Corbisier, T. N., & Montone, R. C. (2016). Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 106(1–2), 366–371. https://doi.org/10.1016/j.marpolbul.2016.02.056

    Article  PubMed  CAS  Google Scholar 

  • USEPA. (1996). Method 3050B: Acid digestion of sediments, sludges, and soils. The Journal of the Japan Society for Bronchology, 18(7), 723. https://doi.org/10.18907/jjsre.18.7_723_2

    Article  Google Scholar 

  • USEPA. (2000). Method 6010C (SW-846): Inductively coupled plasma-atomic emission spectrometry. Encyclopedia of Volcanoes, 26(2), 662. https://doi.org/10.3969/j.issn.1007-2012.2019.02.001

    Article  Google Scholar 

  • USEPA. (2014). Method 6020B (SW-846): Inductively coupled plasma-mass spectrometry (p. 165).

    Google Scholar 

  • Varejâo, E. V. V., Bellato, C. R., & Fontes, M. P. F. (2009). Mercury fractionation in stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil. Environmental Monitoring and Assessment, 157(1–4), 125–135. https://doi.org/10.1007/s10661-008-0522-0

    Article  PubMed  CAS  Google Scholar 

  • Vergilio, C. S., Lacerda, D., Souza, T. S., Oliveira, B. C. V., Fioresi, V. S., Souza, V. V., Rodrigues, G. R., Barbosa, M. K. A. M., Sartori, E., Rangel, T. P., Almeida, D. Q. R., Almeida, M. G., Thompson, F., & Rezende, C. E. (2021). Immediate and long-term impacts of one of the worst mining tailing dam failure worldwide (Bento Rodrigues, Minas Gerais, Brazil). Science of the Total Environment, 756, 143697. https://doi.org/10.1016/j.scitotenv.2020.143697

    Article  ADS  CAS  Google Scholar 

  • Vieira, F. (2009). Distribuição, impactos ambientais e conservação da fauna de peixes da bacia do rio Doce. MGBiota, 2(5), 5–22 http://ief.mg.gov.br/images/stories/MGBIOTA/mgbiota11/mgbiot_v.2n.5.pdf#page=5

    Google Scholar 

  • Vicq, R., Matschullat, J., Leite, M. G. P., Nalini Junior, H. A., & Mendonça, F. P. C. (2015). Iron Quadrangle stream sediments, Brazil: geochemical maps and reference values. Environmental Earth Science, 74(5), 4407–4417. https://doi.org/10.1007/s12665-015-4508-2

    Article  ADS  CAS  Google Scholar 

  • Weber, A. A., Sales, C. F., de Souza Faria, F., Melo, R. M. C., Bazzoli, N., & Rizzo, E. (2020). Effects of metal contamination on liver in two fish species from a highly impacted neotropical river: A case study of the Fundão dam, Brazil. Ecotoxicology and Environmental Safety, 190. https://doi.org/10.1016/j.ecoenv.2020.110165

  • Wentworth, C. C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30(5), 377–392. https://doi.org/10.2307/30063207

    Article  ADS  Google Scholar 

  • **e, L., Li, P., & Mu, D. (2023). Spatial distribution, source apportionment and potential ecological risk assessment of trace metals in surface soils in the upstream region of the Guanzhong Basin, China. Environmental Research, 234, 116527. https://doi.org/10.1016/j.envres.2023.116527

    Article  ADS  PubMed  CAS  Google Scholar 

  • Yamamoto, F. Y., Pauly, G. E., Nascimento, L. S., Fernandes, G. M., Santos, M. P., Kim, B. S. M., et al. (2022). Chemical data of contaminants in water and sediments from the Doce River four years after the mining dam collapse disaster. Data in Brief, 45, 108715. https://doi.org/10.1016/j.dib.2022.108715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto, F. Y., Pauly, G. E. F., Nascimento, L. S., Fernandes, G. M., Santos, M. P., Figueira, R. C. L., Cavalcante, R. M., Grassi, M. T., & Abessa, D. M. S. (2023). Explaining the persistence of hazardous chemicals in the Doce River (Brazil) by multiple sources of contamination and a major environmental disaster. Journal of Hazardous Materials Advances. https://doi.org/10.1016/j.hazadv.2023.100250

  • Yamamoto, F. Y., Thaisa, A., Souza, C., Paula, V., De, S., Beverari, I., Garcia, J., Padial, A., & Abessa, D. S. (2022). From molecular endpoints to modeling longer-term effects in fish embryos exposed to the elutriate from Doce River. Science of the Total Environment, 846, 157332. https://doi.org/10.1016/j.scitotenv.2022.157332

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Dual publication

Parts of the data used in this manuscript were already published elsewhere, as follows: The raw chemical data of sediments (Tables S12-S15 and S16-S19) were made available as Supplementary Material in the paper “Spatial–temporal variations of metals and arsenic in sediments from the Doce River after the Fundão Dam rupture and their bioaccumulation in Corbicula fluminea” (https://doi.org/10.1002/ieam.4773), which scope was focused on assessing metals bioaccumulation in bivalves. In that manuscript, the data were not explored or discussed for the same purpose as this article, as those results only aimed to support the interpretation of bioaccumulation data and the calculation of the bioaccumulation factors (BAFs). In the present article, these data are deeply explored in different forms, such as to assess the spatiotemporal variation of metal concentrations, to calculate the geochemical indices (Igeo and EF), and in to explain the acute toxicity, with no overlap in the scope of the articles considered here.

Funding

São Paulo Research Foundation (FAPESP) financial support (Research grants #2018/23279-4 and #2016/15229-1). CAPES-FAPEMIG-FAPES-CNPq-ANA (Process #88887.124100/2016-00; grant CAPES #88887.144657/2017-00) and the financial support to CESAM (UIDP/50017/2020 + UIDB/50017/2020+LA/P/0094/2020). CNPq for the PQ fellowship. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

GFEP led the study and contributed to the study design and conceptualization, data acquisition and analysis, manuscript writing and editing. FCP contributed to the conceptualization, data acquisition and analysis, and manuscript editing. FYY contributed to field sampling, laboratorial testing, data acquisition and interpretation, and manuscript revisions. THT and BSMK contributed to the data acquisition and analysis, and manuscript editing. ACFC contributed to the methodology and analysis, and laboratorial testing. CCR contributed to the methodology and laboratorial testing. LM contributed to field sampling assisted in the study design. RCLF contributed to study conceptualization, data acquisition and analysis, and manuscript editing. DA contributed to the concept design, laboratorial experiments, data analysis and interpretation, supervision, resources, and manuscript writing.

Corresponding author

Correspondence to Guacira de Figueiredo Eufrasio Pauly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Figueiredo Eufrasio Pauly, G., Perina, F.C., Yamamoto, F.Y. et al. Five years after the collapse of the Fundão Dam: lessons from temporal monitoring of chemistry and acute toxicity. Environ Monit Assess 196, 247 (2024). https://doi.org/10.1007/s10661-024-12405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12405-8

Keywords

Navigation