Log in

Mercury fractionation in stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Iron Quadrangle (IQ) region, located in the state of Minas Gerais, has been the most important gold producing area in Brazil since the end of seventeenth century. The use of mercury for gold amalgamation in small scale mines has been responsible for large release of Hg to aquatic and terrestrial environments during 300 years of mining. The present work sought to evaluate the fractionation of Hg in stream sediments is the southern region of the IQ by utilizing sequential extraction. Since mobility and availability of Hg are related to its distribution among sediment partitions, fractionation methods provide detailed information on the ecotoxicological impact and risks associated to the presence of Hg in sediments. The total Hg concentration varied from 179.3 to 690.1 μg kg − 1 and Hg0 accounted for the majority at all sample sites, ranging from 42% to 56% of the total.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa, A. C., Souza, J., Dórea, J. G., Jardim, W. F., & Fadini, P. S. (2003). Mercury biomagnification in a tropical black water, Rio Negro, Brazil. Archives of Environmental Contamination and Toxicology, 45, 235–246. doi:10.1007/s00244-003-0207-1.

    Article  CAS  Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkaki plants. The Science of the Total Environment, 284, 191–203. doi:10.1016/S0048-9697(01)00885-3.

    Article  CAS  Google Scholar 

  • Bonzongo, J. C., Heim, K. J., Warwick, J. J., & Lyons, W. B. (1996). Mercury levels in surface waters of the Carson River–Lahontan Reservoir system, Nevada: Influence of historic mining activities. Environmental Pollution, 92, 193–201. doi:10.1016/0269-7491(95)00102-6.

    Article  CAS  Google Scholar 

  • Boszke, L., Kowalski, A., & Siepak, J. (2004). Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland). Water, Air, and Soil Pollution, 159, 125–138. doi:10.1023/B:WATE.0000049171.22781.bd.

    Article  CAS  Google Scholar 

  • Brookins, D. G. (1988). E h –pH diagrams for geochemistry (p. 176). New York: Springer.

    Google Scholar 

  • CETEM (1992). In L. H. Farid (Ed.), Preliminary diagnosis of the environmental impacts caused by gold prospecting in Alta Floresta (MT) (p. 185). Rio de Janeiro: Centro de Tecnologia Mineral.

    Google Scholar 

  • Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66, 1431–1440. doi:10.1016/j.chemosphere.2006.09.030.

    Article  CAS  Google Scholar 

  • Chin, Y., & Gschwend, P. M. (1991). The abundance, distribution, and configuration of porewater organic colloids in recent sediments. Geochimica et Cosmochimica Acta, 55, 1309–1317. doi:10.1016/0016-7037(91)90309-S.

    Article  CAS  Google Scholar 

  • Clarkson, T. W. (2002). The three modern faces of mercury. Environmental Health Perspectives, 110, 11–23.

    CAS  Google Scholar 

  • Coelho, I. G. D. (1994). Clima. In P. R. J. Alvim (Ed.), Desenvolvimento Ambiental de Ouro Preto–Microbacia do Ribeirão do Funil. MG. Belo Horizonte: CETEC/IGA-SAE/PR.

    Google Scholar 

  • CONAMA–Conselho Nacional de Meio Ambiente (2005). Resolução no. 357, Ministério do Desenvolvimento Urbano e Meio Ambiente, Brasília, Brazil.

  • Cranston, R. E., & Buckley, D. E. (1972). Mercury pathways in river and estuary. Environmental Science & Technology, 6, 274–278. doi:10.1021/es60062a007.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to asses the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 45–55. doi:10.1016/S0003-2670(98)00057-9.

    Article  CAS  Google Scholar 

  • Dorr, J. V. N., II (1969). Physiographic, stratigraphic and structural development of the QF, Brazil. Prof. Paper 641-A (pp. 109). Washington: DNPM/USGS.

    Google Scholar 

  • EMBRAPA (1997). Manual de métodos de análise do solo (2nd edn.). Rio de Janeiro: Centro Nacional de Pesquisa de Solos.

    Google Scholar 

  • Fernández-Martinéz, R., Loredo, J., Ordóñez, A., & Rucandio, M. I. (2005). Distribution and mobility of mercury in soils from an old mining área in Mieres, Asturias (Spain). The Science of the Total Environment, 346, 200–212. doi:10.1016/j.scitotenv.2004.12.010.

    Article  CAS  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2004). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857. doi:10.1039/b207574c.

    Article  CAS  Google Scholar 

  • Filho, S. R., & Maddock, J. E. L. (1997). Mercury pollution in two gold mining areas of the Brazilian Amazon. Journal of Geochemical Exploration, 58, 231–240. doi:10.1016/S0375-6742(97)00006-X.

    Article  Google Scholar 

  • Förstner, U., & Wittman, G. T. (1979). Metal pollution in the aquatic environment (p. 486). Berlin: Springer.

    Google Scholar 

  • Gibbs, R. J. (1973). Mechanisms of trace metal transport in rivers. Science, 181, 71–73. doi:10.1126/science.180.4081.71.

    Article  Google Scholar 

  • Gill, G. A., & Bruland, K. W. (1990). Mercury speciation in surface freshwater systems in California and other areas. Environmental Science & Technology, 24, 1392–1400. doi:10.1021/es00079a014.

    Article  CAS  Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. Trends in Analytical Chemistry, 21, 451–467. doi:10.1016/S0165-9936(02)00603-9.

    Article  CAS  Google Scholar 

  • Gray, J. E., Theodorakos, P. M., Bailey, E. A., & Turner, R. R. (2000). Distribution, speciation and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. The Science of the Total Environment, 260, 21–33. doi:10.1016/S0048-9697(00)00539-8.

    Article  CAS  Google Scholar 

  • Guimarães, J. R. D., Forstier, A. H., Forti, M. C., Melfi, J. A., Kehrig, H., Mauro, J. B. N., et al. (1999). Mercury from human and environmental samples from two lakes in Amapa, Brazilian Amazon. Ambio, 28, 196–301.

    Google Scholar 

  • Hacon, S., Artaxo, P., Gerab, F., Yamasoe, M. A., Campos, R. C., Conti, L. F., et al. (1995). Atmospheric mercury and trace elements in the region of Alta Floresta in the Amazon Basin. Water, Air, and Soil Pollution, 80, 273–283. doi:10.1007/BF01189677.

    Article  CAS  Google Scholar 

  • He, T., Lu, J., Yang, F., & Feng, X. (2007). Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. The Science of the Total Environment, 386, 53–64. doi:10.1016/j.scitotenv.2007.07.022.

    Article  CAS  Google Scholar 

  • Hempel, M., Chau, Y. K., Dutka, B. J., McInnis, R., Kwan, K. K., & Liu, D. (1995). Toxicity of organomercury compounds: Bioassay results as a basis for risk assessment. Analyst (London), 120, 721–724. doi:10.1039/an9952000721.

    Article  CAS  Google Scholar 

  • Hess, E. V. (2002). Environmental chemicals and autoimmune disease: Cause and effect. Toxicology, 181–182, 65–70. doi:10.1016/S0300-483X(02)00256-1.

    Article  Google Scholar 

  • Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2, 437–451. doi:10.1016/0883-2927(87)90027-8.

    Article  CAS  Google Scholar 

  • Kim, C. S., Rytuba, J. J., & Brown, G. E., Jr. (2004). Geological and anthropogenic factors influencing mercury speciation in mine wastes: An EXAFS spectroscopy study. Applied Geochemistry, 19, 379–393. doi:10.1016/S0883-2927(03)00147-1.

    Article  CAS  Google Scholar 

  • Klingerman, D. C., La Rovere, E. L., & Costa, M. A. (2001). Management challenges on small-scale gold mining activities in Brazil. Environmental Research, 87, 181–198. doi:10.1006/enrs.2001.4301.

    Article  CAS  Google Scholar 

  • Krantz, A., & Dorevitch, S. (2004). Metal exposure and common chronic diseases: A guide for the clinician. Disease-a-Month, 50, 215–262. doi:10.1016/j.disamonth.2004.04.001.

    Article  Google Scholar 

  • Lacerda, L. D. (1997). Global mercury emissions from gold and silver mining. Water, Air, and Soil Pollution, 97, 209–221.

    CAS  Google Scholar 

  • Lacerda, L. D., & Salomons, W. (1991). Mercury in the Amazon: A chemical time bomb? Dutch Ministry of housing, physical planning and environment. Chemical time bomb project (p. 46). Amsterdam, The Netherlands.

  • Lacerda, L. D., & Salomons, W. (1998). Mercury form gold and silver mining: A chemical time bomb? (p. 146). Berlin: Springer.

    Google Scholar 

  • Ladeira, E. A. (1988). Metalogenia dos depósitos de ouro do Quadrilátero Ferrífero, Minas Gerais, Brasil. In C. Schobbenhaus & C. E. S. Coelho (Eds.), Principais Depósitos Minerais do Brasil (pp. 301–375). Brasília: DNPM/CVRD, 3.

  • Lechler, P. J., Miller, J. R., Hsu, L.-C., & Desilets, M. O. (1997). Mercury mobility at the Carson River superfund site, west-central Nevada, USA: Interpretation of mercury speciation data in mill tailings, soils, and sediments. Journal of Geochemical Exploration, 58, 259–267. doi:10.1016/S0375-6742(96)00071-4.

    Article  CAS  Google Scholar 

  • Leermakers, M., Baeyens, W., Quevauviller, P., & Horvat, M. (2005). Mercury in environmental samples: Speciation, artifacts and validation. Trends in Analytical Chemistry, 24, 383–393. doi:10.1016/j.trac.2004.01.001.

    Article  CAS  Google Scholar 

  • Lindqvist, O., & Rodhe, H. (1985). Atmospheric mercury: A review. Tellus, 37B, 136–159.

    Article  CAS  Google Scholar 

  • Loux, N. T. (1998). An assessment of mercury-species-dependent binding with natural organic carbon. Chemical Speciation and Bioavailability, 10, 127–136. doi:10.3184/095422998782775754.

    Article  CAS  Google Scholar 

  • Malm, O. (1998). Gold mining as a source of mercury exposure in the Brazilian Amazon. Environmental Research, 77, 73–78. doi:10.1006/enrs.1998.3828.

    Article  CAS  Google Scholar 

  • Martinelli, L. A., Ferreira, L. R., Forsberg, B. R., & Victoria, R. L. (1988). Mercury contamination in the Amazon: A gold rush consequence. Ambio, 17, 252–254.

    CAS  Google Scholar 

  • Mascarenhas, A. F. S., Brabo, E. S., Silva, A. P., Fayal, K. F., Jesus, I. M., & Santos, E. C. O. (2004). Avaliação da concentração de mercúrio em sedimentos e material particulado no rio Acre, Estado do Acre, Brasil. Acta Amazonica, 34, 61–68. doi:10.1590/S0044-59672004000100008.

    Article  Google Scholar 

  • Nriagu, J. (1994). Mercury pollution from the past mining of gold and silver in America. The Science of the Total Environment, 149, 167–181. doi:10.1016/0048-9697(94)90177-5.

    Article  CAS  Google Scholar 

  • Oliveira, F. R. (1998). Contribuição ao estudo da geologia estrutural e da gênese do depósito aurífero de Passagem de Mariana-MG. MSc Thesis, Unicamp, São Paulo.

  • Orem, W. H., Hatcher, P. G., Spiker, E. C., Szeverenyi, N. M., & Maciel, G. E. (1986). Dissolved organic matter in anoxic waters from Mangrove Lake, Bermuda. Geochimica et Cosmochimica Acta, 69, 4881–4894.

    Google Scholar 

  • Pestana, M. H. D., Lechler, P., Formoso, M. L. L., & Miller, J. (2000). Mercury in sediments from gold and copper exploration áreas in the Camaquã River Basin, Southern Brazil. Journal of South American Earth Sciences, 13, 537–547. doi:10.1016/S0895-9811(00)00039-0.

    Article  Google Scholar 

  • Raposo, J. C., Zuloaga, O., Sanz, J., Villanueva, U., Crea, P., Extrebaria, N., et al. (2006). Analytical and thermodinamical approach to understand the mobility retention of arsenic species from the river to estuary. Marine Chemistry, 99, 42–51. doi:10.1016/j.marchem.2005.02.004.

    Article  CAS  Google Scholar 

  • Ribeiro, M. G., Jr., Silva Filho, E. V., Souza, M., & Lacerda, L. D. (1999). Mercury burden in soils from Central Amazon. In Book of abstract of the 5th international conference mercury as a global pollutant. Rio de Janeiro, Brazil.

  • Ribeiro-Rodrigues, L. C. (1998). Gold mineralization in Archean banded iron-formation of the QF, Minas Gerais, Brazil. The Cuiaba Mine. PhD Thesis, RTWH Aachen.

  • Rubio, R., & Rauret, G. (1996). Validation of the methods for heavy metal speciation in soils and sediments. Journal of Radioanalytical and Nuclear Chemistry, 208, 529–540. doi:10.1007/BF02040070.

    Article  CAS  Google Scholar 

  • Rytuba, J. J. (2003). Mercury from mineral deposits and potential environmental impact. Environmental Geology, 43, 326–338.

    CAS  Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in hydrocycle (p. 349). Berlin: Springer.

    Google Scholar 

  • Sanei, H., & Goodarzi, F. (2006). Relationship between organic matter and mercury in recent lake sediment: The physical-geochemical aspects. Applied Geochemistry, 21, 1900–1912. doi:10.1016/j.apgeochem.2006.08.015.

    Article  CAS  Google Scholar 

  • Silva, A. P., Ferreira, N. L. S., Pádua, H. B., Veiga, M. M., Silva, G. D., Castro e Silva, E. O., et al. (1993). Mobilidade do mercúrio no Pantanal de Poconé. Ambiente, 7, 52–56.

    Google Scholar 

  • Slowey, A. J., Rytuba, J. J., & Brown, G. E., Jr. (2005). Speciation of mercury and mode of transport from placer gold mine tailings. Environmental Science & Technology, 39, 1547–1554. doi:10.1021/es049113z.

    Article  CAS  Google Scholar 

  • Stein, E. D., Cohen, Y., & Winer, A. M. (1996). Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science and Technology, 26, 1–43.

    Article  CAS  Google Scholar 

  • Straaten, P. V. (2000). Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe. The Science of the Total Environment, 259, 105–113. doi:10.1016/S0048-9697(00)00553-2.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of the factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31, 241–293. doi:10.1080/20016491089226.

    Article  CAS  Google Scholar 

  • Valle, C. M., Santana, G. P., & Windmöller, C. C. (2006). Mercury conversion process in Amazon soils evaluated by thermodesorption analysis. Chemosphere, 65, 1966–1975. doi:10.1016/j.chemosphere.2006.07.001.

    Article  CAS  Google Scholar 

  • Vial, D. S. (1988). Mina de ouro de Cuiabá, QF, Minas Gerais. In C. Schobbenhaus & C. E. S. Coelho (Eds.), Principais depósitos minerais do Brasil (Vol. 3, pp. 413–419). Brasilia: DNPM/CVRD.

    Google Scholar 

  • Vieira, F. W. R. (1988). Processos epigenéticos de formação dos depósitos auríferos e zonas de alteração hidrotermal do Grupo Nova Lima, Quadrilátero Ferrífero, Minas Gerais. In Proc 35th congr Brasileiro de geologia, 6–13 November 1988 (Vol. 1, pp. 76–87) Belém. Sociedade Brasileira de Geologia, Belém.

  • Vieira, F. W. R. (1991). Textures and processes of hydrothermal alteration and mineralization in the Nova Lima Group, Minas Gerais, Brasil. In E. A. Ladeira (Ed.), The economics, geology, geochemistry and genesis of gold deposits. Proc symp Brazil gold’91, 13–17 May 1991 (pp. 319–325). Belo Horizonte. Balkema, Rotterdam.

  • Wang, F., & Chen, J. (2000). Relation of sediment characteristics to trace metal concentrations: A statistical study. Water Research, 34, 694–698. doi:10.1016/S0043-1354(99)00184-0.

    Article  CAS  Google Scholar 

  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation of mercury contamination in aquatic systems—a literature review. Environmental Pollution, 131, 323–336. doi:10.1016/j.envpol.2004.01.010.

    Article  CAS  Google Scholar 

  • Wang, D., Shi, X., & Wei, S. (2003). Accumulation and transformation of atmospheric mercury in soil. The Science of the Total Environment, 304, 209–214. doi:10.1016/S0048-9697(02)00569-7.

    Article  CAS  Google Scholar 

  • Wasserman, J. C., Hacon, S., & Wasserman, M. A. (2003). Biogeochemistry of mercury in the Amazonian environment. Ambio, 32, 336–342. doi:10.1639/0044-7447(2003)032[0336:BOMITA]2.0.CO;2.

    Google Scholar 

  • Watras, C. J., & Bloom, N. S. (1992). Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnology and Oceanography, 37, 1313–1318.

    Article  Google Scholar 

  • Windmöller, C. C., Wilken, R.-D., & Jardim, W. F. (1996). Mercury speciation in contaminated soils by thermal release analysis. Water, Air, and Soil Pollution, 89, 399–416. doi:10.1007/BF00171644.

    Article  Google Scholar 

  • Žemberyová, M., Barteková, J., & Hagarová, I. (2006). The utilization of modified BCR tree-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta, 70, 973–978. doi:10.1016/j.talanta.2006.05.057.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Bellato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varejão, E.V.V., Bellato, C.R. & Fontes, M.P.F. Mercury fractionation in stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil. Environ Monit Assess 157, 125–135 (2009). https://doi.org/10.1007/s10661-008-0522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0522-0

Keywords

Navigation