Log in

The 2021 seismic hazard model for Slovenia (SHMS21): overview and results

  • Original Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Slovenia is an earthquake-prone country with a moderate seismic hazard, characterized by relatively long recurrence intervals for strong earthquakes. With newly compiled data and revised info on active faults of the region, we are now able to supplement and enhance the probabilistic seismic hazard assessment, which was previously based mainly on the seismic catalog. The core of the seismic hazard model is the seismogenic source model combining various seismogenic representations i.e. area and gridded sources, and active faults. The ground motion model is characterized by a backbone model with regionalized parameters, which was also used to update the European seismic hazard model. We considered epistemic uncertainty in the most influential input parameters, implemented in a logic tree with 1377 branches. Considering the existing and forthcoming requests of the seismic design standard—Eurocode 8, we have developed the peak ground acceleration map of Slovenia and spectral acceleration maps for ten spectral periods, as well as seismic hazard curves and spectra for selected locations. The highest peak ground acceleration values (0.325 g) are at the western border of Slovenia with Italy. Other high-hazard areas extend across the Dinarides, in southeast Slovenia, and around the capital Ljubljana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

source models. Earthquakes from the whole KPN2018 catalog are shown on the map of the P model, while the other three maps are presented together with the corresponding source model and earthquakes from the complete KPN2018 from 1875. All hazard maps are estimated for a return period of 475 years and a reference Vs30 value of 800 m/s

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The parameterization tables for the area and fault-specific sources as well as shape files describing source geometry are available in Pangaea online repository (Atanackov et al. 2022).

Code availability

PSHA results were calculated with open-source software OpenQuake (Pagani et al. 2014; OpenQuake 2021).

References

  • Aki K (1965) Maximum likelihood estimate of b in the formula log (N) = a − bM and its confidence limits. Bull Earthq Res 43:237–239

    Google Scholar 

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81(2):195–206

    Article  Google Scholar 

  • Akkar S, Sandıkkaya MA, Ay BÖ (2014a) Compatible ground motion prediction equations for dam** scaling factors and vertical-to-horizontal spectral amplitude ratios for the broader Europe region. Bull Earthq Eng 12:517–547. https://doi.org/10.1007/s10518-013-9537-1

    Article  Google Scholar 

  • Akkar S, Sandıkkaya MA, Bommer JJ (2014b) Empirical ground-motion models for point and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387. https://doi.org/10.1007/s10518-013-9461-4

    Article  Google Scholar 

  • Ameri G, Baumont D, Gomes C, Martin C, Secanell R, Le Dortz K, Le Goff B (2015) On the choice of maximum earthquake magnitude for seismic hazard assessment in metropolitan France—insight from the Bayesian approach, 9e`me Colloque National AFPS, 30/11–02/12. Marne-la-Valle´e

  • ARSO (2001) Design ground acceleration map of Slovenia. Slovenian Environment Agency (ARSO), Ljubljana. http://www.arso.gov.si/potresi/potresna%20nevarnost/projektni_pospesek_tal.html. Accessed 17 Nov 2021

  • Atanackov J, Jamšek Rupnik P, Jež J, Celarc B, Novak M, Milanič B, Markelj A, Bavec M, Kastelic V (2021a) Database of active faults in slovenia: compiling a new active fault database at the junction between the alps, the Dinarides and the Pannonian basin tectonic Domains. Front Earth Sci. https://doi.org/10.3389/feart.2021.604388

    Article  Google Scholar 

  • Atanackov J, Jamšek Rupnik P, Celarc B, Jež J, Novak M, Milanič B, Markelj A (2021b) Tolmač potresnih virov in ocenjevanje geološko določenih parametrov za karto potresne nevarnosti Slovenije (Explanatory text of fault seismic sources and estimation of geologically determined parameters for Slovenian seismic hazard map). Geological Survey of Slovenia, Ljubljana, p 139 (in Slovene)

  • Atanackov J, Jamšek Rupnik P, Zupančič P, Šket Motnikar B, Živčić M, Čarman M, Milanič B, Kastelic V, Rajh G, Gosar A (2022) Seismogenic fault and area sources for probabilistic seismic hazard model in Slovenia. PANGAEA. https://doi.pangaea.de/10.1594/PANGAEA.940100

  • Basili R, Kastelic V, Demircioglu MB, Garcia Moreno D, Nemser ES, Petricca P, Sboras SP, Besana-Ostman GM, Cabral J, Camelbeeck T, Caputo R, Danciu L, Domac H, Fonseca J, García-Mayordomo J, Giardini D, Glavatovic B, Gulen L, Ince Y, Pavlides S, Sesetyan K, Tarabusi G, Tiberti MM, Utkucu M, Valensise G, Vanneste K, Vilanova S, Wössner J (2013) The European database of seismogenic faults (EDSF) compiled in the framework of the Project SHARE. https://doi.org/10.6092/INGV.IT-SHARE-EDSF

  • Bindi D, Pacor F, Sabetta F, Massa M (2009) Towards a new reference ground motion prediction equation for Italy: update of the Sabetta-Pugliese (1996). Bull Earthq Eng 7:591–608. https://doi.org/10.1007/s10518-009-9107-8

    Article  Google Scholar 

  • Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2014) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3s using the RESORCE dataset. Bull Earthq Eng 12(1):391–430. https://doi.org/10.1007/s10518-013-9525-5

    Article  Google Scholar 

  • Bindi D, Cotton F, Kotha SR, Bosse C, Stromeyer D, Grünthal G (2017) Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas. J Seismol 21:1201–1218. https://doi.org/10.1007/s10950-017-9661-5

    Article  Google Scholar 

  • Bommer JJ, Crowley H (2017) The purpose and definition of the minimum magnitude limit in PSHA calculations. Seismol Res Lett 88:1097–1106

    Article  Google Scholar 

  • BSHAP, Harmonization of seismic hazard maps for the western Balkan countries (2011) NATO SfP Project No. 983054. http://www.seismo.co.me/documents/NATO%20SfP%20No.983054%20FINAL%20REPORT.pdf Accessed 14 Feb 2022

  • Camassi R, Caracciolo CH, Castelli V, Slejko D (2011) The 1511 Eastern Alps earthquakes: a critical update and comparison of existing macroseismic datasets. J Seismol 15:191–213

    Article  Google Scholar 

  • Caracciolo CH, Slejko D, Camassi R, Castelli V (2021) The eastern Alps earthquake of 25 January 1348: new insights from old sources. Bull Geophys Oceanogr 62(3):335–364. http://www3.inogs.it/bgo/pdf/bgo00364_Caracciolo.pdf. Accessed 14 Feb 2022

  • Carafa M, Valensise G, Bird P (2017) Assessing the seismic coupling of shallow continental faults and its impact on seismic hazard estimates: a case-study from Italy. Geophys J Int 209:32–47. https://doi.org/10.1093/gji/ggx002

    Article  Google Scholar 

  • CEN (2004) European Committee for Standardization, EN 1998–1:2004 Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, Seismic actions and rules for buildings. https://www.phd.eng.br/wp-content/uploads/2015/02/en.1998.1.2004.pdf. Accessed 17 Nov 2021

  • CEN (2021) Eurocode 8: Earthquake resistance design of structures, EN1998–1–1_version_01–10–2021, Working draft

  • Chiou B, Youngs R (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 30(3):1117–1153. https://doi.org/10.1193/072813EQS219M

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Article  Google Scholar 

  • Cornell CA, Vanmarcke EH (1969) The major influences on seismic risk. In Proceedings of the fourth world conference on earthquake engineering, Santiago, Chile

  • Danciu L, Giardini D (2015) Global Seismic Hazard Assessment Program - GSHAP legacy. Ann Geophys 58(1). https://www.annalsofgeophysics.eu/index.php/annals/article/view/6734. Accessed 18 Nov 2021

  • Danciu L, Nandan S, Reyes C, Basili R, Weatherill G, Beauval C, Rovida A, Vilanova S, Sesetyan K, Bard P-Y, Cotton F, Wiemer S, Giardini D (2021) The 2020 update of the European Seismic Hazard Model: Model Overview. EFEHR Technical Report 001, v1.0.0. https://gitlab.seismo.ethz.ch/efehr/eshm20/-/tree/master/documentation. Accessed 11 Feb 2021. https://doi.org/10.12686/a15

  • DISS Working Group (2018) Database of Individual Seismogenic Sources (DISS), Version 3.2.1: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia. http://diss.rm.ingv.it/diss/. Accessed 17 Nov 2021. https://doi.org/10.6092/INGV.IT-DISS3.2.1

  • Douglas J (2018) Calibrating the backbone approach for the development of earthquake ground motion models. In: Best practice in physics-based fault rupture models for seismic hazard assessment of nuclear installations: issues and challenges towards full seismic risk analysis, Cadarache, France. https://strathprints.strath.ac.uk/63991/1/Douglas_PSHANI_2018_Calibrating_the_backbone_approach_for_the_development_of_earthquake_ground_motion_models.pdf. Accessed 17 Nov 2021

  • Douglas J (2021) Ground motion prediction equations 1964–2020, Department of Civil and Environmental Engineering University of Strathclyde. http://www.gmpe.org.uk/gmpereport2014.html. Accessed 17 Nov 2021

  • EFEHR (2022) European facilities for earthquake hazard and risk service. http://www.efehr.org. Accessed 14 Feb 2022

  • Finetti I, Russi M, Slejko D (1979) The Friuli earthquake (1976–1977). Tectonophys 53:261–272

    Article  Google Scholar 

  • Frankel AD (1995) Map** seismic hazard in the Central and Eastern United States. Seismol Res Lett 66(4):8–21

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64:1363–1367

    Article  Google Scholar 

  • Gentili S, Sugan M, Peruzza L, Schorlemmer D (2011) probabilistic completeness assessment of the past 30 years of seismic monitoring in northeastern Italy. Phys Earth Planet Inter 186(1–2):81–96. https://doi.org/10.1016/j.pepi.2011.03.005

    Article  Google Scholar 

  • GeoRisk (1995–2019) Hungarian earthquake bulletin, Hungarian Academy of Sciences. Geodetic and Geophysical Research Institute, Seismological Observatory, Budapest. https://www.georisk.hu/Bulletin/bulletine.html. Accessed 17 Nov 2021

  • GFZ (2008) Croatian earthquake catalogue (computer file). Faculty of Science, University of Zagreb, Zagreb, Department of Geophysics

    Google Scholar 

  • Giardini D, Woessner J, Danciu L (2014) Map** Europe’s Seismic Hazard. Eos 95(29):261–262. https://doi.org/10.1002/2014EO290001

    Article  Google Scholar 

  • Godano C, **ue F (2000) Is the seismic moment – frequency relation universal? Geophys J Int 142:193–198

    Article  Google Scholar 

  • Grünthal G (1998) European Macroseismic Scale. Cahiers du Centre Europeen de Geodynamique et de Seismologie. https://doi.org/10.2312/EMS-98.full.en

  • Grünthal G, Wahlström R, Stromeyer D (2009) The unified catalogue of earthquakes in central, northern, and Northwestern Europe (CENEC)—updated and expanded to the last millennium. J Seismol 13:517–541. https://doi.org/10.1007/s10950-008-9144-9

    Article  Google Scholar 

  • Hale C, Abrahamson N, Bozorgnia Y (2018) Probabilistic seismic hazard analysis code verification, PEER report 2018/03. https://peer.berkeley.edu/sites/default/files/2018_03_hale_final_8.13.18.pdf. Accessed 17 Nov 2021

  • Hanks TC, Bakun WH (2002) A bilinear source-scaling model for M–log A observations of continental earthquakes. Bull Seismol Soc Am 92(5):1841–1846

    Article  Google Scholar 

  • Herak D (1995) Razdioba brzina prostornih valova potresa i seizmičnost širega područja Dinare (Distribution of body-wave velocities and seismicity of the greater Dinara Mt. Region). Ph. D. Dissertation, University of Zagreb, Croatia (in Croatian with English abstract)

  • INGV (2021) Regional Centroid Moment Tensor. http://www.bo.ingv.it/RCMT/. Accessed 17 Nov 2021

  • INOGS - Instituto Nacionale di Oceanografia e di Geofisica Sperimentale, Centro Ricerche Sismologiche (CRS), 1977–2019. Bollettino della Rete Sismometrica del Friuli-Venezia-Giulia. http://www.crs.inogs.it/bollettino/RSFVG/. Accessed 17 Nov 2021

  • ISC—International Seismological Center (2021) ISC catalogue. http://www.isc.ac.uk/iscbulletin/search/catalogue/. Accessed 17 Nov 2021

  • Johnston AC, Coppersmith K, Kanter L, Cornell C (1994) The earthquakes of stable continental regions. Assessment of large earthquake potential. EPRI Report Tr-102261-V1, 2–1–98., Palo Alto, California

  • Kagan YY (1999) Universality of the seismic moment-frequency relation. Pure Appl Geophys 155:537–573

    Article  Google Scholar 

  • Karník V (1971) Seismicity of the European Area, Part 2. Czechoslovak Academy of Sciences, Praha

  • Kijko A (2012) On Bayesian procedure for maximum earthquake magnitude estimation. Res Geoph 2(1). https://doi.org/10.4081/rg.2012.e7

  • Košir M, Cecić I (2011) Potres 26. marca 1511 v luči novih raziskav (The earthquake on 26 March 1511—interpretation of some unknown historical sources). Idrijski razgledi 56(1):90–104 (in Slovene with English abstract)

  • Kotha SR, Weatherill G, Bindi D et al (2020) A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe. Bull Earthq Eng 18:4091–4125. https://doi.org/10.1007/s10518-020-00869-1

    Article  Google Scholar 

  • Lapajne JK (2000) Some features of the spatially smoothed seismicity approach. In: Lapajne JK (ed) Seismicity modeling in seismic hazard map**, Workshop proceedings, Geophysical Survey of Slovenia, Ljubljana, 27–33

  • Lapajne JK, Šket Motnikar B, Zabukovec B, Zupančič P (1997) Spatially-smoothed seismicity modelling of seismic hazard in Slovenia. J Seismol 1:73–85

    Article  Google Scholar 

  • Lapajne JK, Šket Motnikar B, Zupančič P (2003) Probabilistic seismic hazard assessment methodology for distributed seismicity. Bull Seismol Soc Am 93(6):2502–2515. https://doi.org/10.1785/0120020182

    Article  Google Scholar 

  • Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988. https://doi.org/10.1785/0120090189

    Article  Google Scholar 

  • Markušić S, Gülerce Z, Kuka N et al (2016) An updated and unified earthquake catalogue for the Western Balkan Region. Bull Earthq Eng 14:321–343. https://doi.org/10.1007/s10518-015-9833-z

    Article  Google Scholar 

  • Miller AC, Rice TR (1983) Discrete approximations of probability distributions. Manag Sci 29(3):352–362

    Article  Google Scholar 

  • Monelli D, Pagani M, Weatherill G, Danciu L, Garcia J (2014) Modeling distributed seismicity for probabilistic seismic-hazard analysis: implementation and insights with the OpenQuake engine. Bull Seismol Soc Am 104(4):1636–1649. https://doi.org/10.1785/0120130309

    Article  Google Scholar 

  • NEIC—National Earthquake Information Center/USGS (2015) World Data Center for Seismology, Catalog of earthquakes located by the USGS/NEIC (1973 - present), Denver. http://earthquake.usgs.gov/earthquakes/search/. Accessed 17 Nov 2021

  • OpenQuake (2021) OpenQuake engine opensource application. https://github.com/gem/oq-engine. Accessed 17 Nov 2021

  • Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panzeri L, Simionato M, Vigano D (2014) OpenQuake engine: an open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85:692–702. https://doi.org/10.1785/0220130087

    Article  Google Scholar 

  • Plešinger A, Kozák J (2003) Beginnings of regular seismic service and research in the Austro-Hungarian Monarchy: Part II. Stud Geophys Geod 47:757−791

  • Poli ME, Zanferrari A (2018) The seismogenic sources of the 1976 Friuli earthquakes: a new seismotectonic model for the Friuli area. Boll. Geof Teor Appl 59(4):463–480

  • Poli ME, Peruzza L, Rebez A, Renner G, Slejko D, Zanferrari A (2002) New seismotectonic evidence from the analysis of the 1976–1977 and 1977–1999 seismicity in Friuli (NE Italy). Boll Geof Teor Appl 43(1–2):53–78

    Google Scholar 

  • Poljak M, Živčić M, Zupančič P (2000) Seismotectonic characteristics of Slovenia. Pure Appl Geoph 157:37–55

    Article  Google Scholar 

  • PVL—Potresi v letu (1994–2019) Annual bulletins, Slovenian Environment Agency (ARSO), Seismology Office, Ljubljana (in Slovene with English abstract)

  • Reiter L (1990) Earthquake hazard analysis, Issues and Insights. Columbia University Press, New York, p 254

    Google Scholar 

  • Ribarič V (1982) Seismicity of Slovenia—catalogue of earthquakes (792 A.D. - 1981). Ljubljana, p 650

  • Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86:337–352

    Google Scholar 

  • Schmid SM, Fügenschuh B, Kounov A, Matenco L, Nievergelt P, Oberhänsli R, Pleuger J, Schefer S, Schuster R, Tomljenović B, Ustaszewski K, van Hinsbergen DJJ (2020) Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Res 78:308–374. https://doi.org/10.1016/j.gr.2019.07.005

    Article  Google Scholar 

  • Scordilis EM (2006) Empirical global relations converting MS and mb to moment magnitude. J Seismol 10:225–236. https://doi.org/10.1007/s10950-006-9012-4

    Article  Google Scholar 

  • Shebalin NV, Karník V, Hadžievski D (eds) (1974) Catalogue of earthquakes. Part I 1901–1970; Part II prior to 1901. UNDP/UNESCO Survey of the Seismicity of the Balkan Region. Skopje, pp 1–65 and App

  • Šket Motnikar B (2010) Preverjanje karte potresne nevarnosti Slovenije (Reestimation of Slovenian seismic hazard map), Potresi v letu 2009 113–127, Slovenian Environment Agency (ARSO), Ljubljana. http://www.arso.gov.si/potresi/poro%C4%8Dila%20in%20publikacije/Potresi%20v%20letu%202009_int.pdf. Accessed 17 November 2021 (in Slovene with English abstract)

  • Šket Motnikar B, Lapajne JK, Zupančič P, Zabukovec B (2000) Application of the spatially smoothed seismicity approach for Slovenia. In: Lapajne JK (ed) Seismicity modeling in seismic hazard map**, Workshop proceedings, Geophysical Survey of Slovenia, 125–133

  • Šket Motnikar B, Čarman M, Godec M, Zupančič P, Cecić I (2016) Potres 1. novembra 2015 na Gorjancih (The Earthquake of 1 November 2015 at Gorjanci Mountains). Ujma 30: 61–68 (in Slovene with English abstract)

  • Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Živčić M, Albini P, Batllo J, Papaioannou C, Tatevossian R, Locati M, Meletti C, Viganò D, Giardini D (2013) The SHARE European earthquake catalogue (SHEEC) 1000–1899. J Seismol 17:523–544. https://doi.org/10.1007/s10950-012-9335-2

    Article  Google Scholar 

  • Tertulliani A, Cecić I, Meurers R, Sović I, Kaiser D, Grunthal G, Pazdirkova J, Sira C, Guterch B, Kysel R, Camelbeeck T, Lecocq T, Szany G (2018) The 6 May 1976 Friuli earthquake: re-evaluating and consolidating transnational macroseismic data. Boll Geof Teor Appl 59(4):417–444.

  • USGS (2021) Search Earthquake Catalog. https://earthquake.usgs.gov/earthquakes/search/. Accessed 17 Nov 2021

  • Utsu T (2002) Relationships between Magnitude Scales. IASPEI Handbook Chapter 44:773–746

    Google Scholar 

  • Ward SN (1998) On the consistency of earthquake moment release and space geodetic strain rates: Europe. Geophys J 135(3):1011–1018. https://doi.org/10.1046/j.1365-246X.1998.t01-2-00658.x

    Article  Google Scholar 

  • Weatherill G, Kotha SR, Cotton F (2020) A regionally-adaptable “scaled backbone” ground motion logic tree for shallow seismicity in Europe: application to the 2020 European seismic hazard model. Bull Earthq Eng 18:5087–5117. https://doi.org/10.1007/s10518-020-00899-9

    Article  Google Scholar 

  • Wells DL, Coppersmith KL (1994) New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wiemer S, Danciu L, Edwards B, Marti B, Fäh D, Hiemer S, Wössner J, Cauzzi C, Kästli P, Kremer K (2016) Seismic hazard model 2015 for Switzerland (SUIhaz2015), Report Swiss Seismological Service (SED) at ETH Zurich. http://www.seismo.ethz.ch/export/sites/sedsite/knowledge/.galleries/pdf_knowledge/SUIhaz2015_final-report_16072016.pdf_2063069169.pdf. Accessed 17 Nov 2021

  • Woessner J, Danciu L, Giardini D, Crowley H, Cotton F, Grünthal G, Valensise G, Arvidsson R, Basili R, Demircioglu MN, Hiemer S, Meletti C, Musson RW, Rovida AN, Sesetyan K, Stucchi M, the SHARE consortium, (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13:3553–3596. https://doi.org/10.1007/s10518-015-9795-1

    Article  Google Scholar 

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75:939–964

    Google Scholar 

  • Zabukovec B (2000) OHAZ—a computer program for spatially smoothed seismicity approach. In: Lapajne JK (ed) Seismicity modeling in seismic hazard map**, Workshop proceedings, Ministry of the Environment and Spatial Planning, Geophysical Survey of Slovenia, Ljubljana, Slovenia, 135–140.

  • ZAMG (1998–2013) Zentralstalt Für Meteorologie und Geodynamik, Erdbeben-Jahresberichte. http://www.zamg.ac.at/cms/de/geophysik/erdbeben/erdbebenarchiv/jahresberichte. Accessed 17 Nov 2021

  • ZAMG (2002) Austrian earthquake catalog (computer file). Central Institute of Meteorology and Geodynamics, Vienna

    Google Scholar 

  • ZAMG (2006–2014) Austrian Bulletin of Regional and Teleseismic events recorded with ZAMG-Stations in Austria (Computer file), Central Institute of Meteorology and Geodynamics, Vienna

  • Živčić M (1994) Earthquake Catalog. In: Fajfar P, Lapajne J (eds) Probabilistic Assessment of Seismic Hazard at Krško Nuclear Power Plant, Rev.1, University of Ljubljana, Department of Civil Engineering

  • Živčić M (2004) Earthquake Catalog. In: Fajfar P (ed) Revised PSHA for NPP Krško site, PSR-NEK-2.7.2, Revision 1, Ljubljana

  • Živčić M, Cecić I, Čarman M, Jesenko T, Ložar Stopar M, Pahor J (2010) Earthquake catalog rev. 2, Slovenian Environment Agency (ARSO), Seismology and geology office, Ljubljana

  • Živčić M, Cecić I, Čarman M, Jesenko T, Ložar Stopar M, Pahor J (2015) Earthquake catalog NEK2015 of Slovenia and the Region, Final Report, Slovenian Environment Agency (ARSO), Seismology and geology office, Ljubljana

  • Živčić M, Cecić I, Čarman M, Jesenko T, Ložar Stopar M, Pahor J (2018) Earthquake catalog KPN2018 of Slovenia and surrounding, rev. 3, Slovenian Environment Agency (ARSO), Seismology and geology office, Ljubljana

  • Zsíros T, Mónus P, Tóth L (1988) Hungarian earthquake catalog (456–1986), Seismological Observatory, Geodetic and Geophysical Research Institute. Hungarian Academy of Sciences, Budapest, p 182, Computer file (1991) - data from 456 to 1991

Download references

Acknowledgements

We are grateful to Vanja Kastelic for her contribution in the delineation of fault-specific sources and many beneficial discussions. We thank Gregor Rajh for develo** some handy python programs, and Graeme Weatherill for providing useful details on the ground motion model.

Funding

Funding of GeoZS experts was provided by Slovenian Environment Agency (ARSO) in the scope of the project Seismotectonic parametrization of Slovenian active faults and seismogenic sources (2014–2020). Funding for supporting research, used in this work, was provided by the Slovenian Research Agency program “Regional Geology” (P1-0011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by BŠM (and the section on earthquake catalog by MŽ) and all authors read, commented, and improved previous versions of the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Barbara Šket Motnikar.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šket Motnikar, B., Zupančič, P., Živčić, M. et al. The 2021 seismic hazard model for Slovenia (SHMS21): overview and results. Bull Earthquake Eng 20, 4865–4894 (2022). https://doi.org/10.1007/s10518-022-01399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-022-01399-8

Keywords

Navigation