Abstract

The Earthquake Model of the Middle East (EMME) project paved the road to a state-of-the-art seismic hazard assessment in the region, including Georgia as one of the key participants. After the EMME project, the Institute of Geophysics initiated the revision of the national seismic hazard model of Georgia, in light of the new findings of the EMME project, new harmonized datasets, fully aligned with the probabilistic framework promoted by the Global Earthquake Model (GEM). In this contribution, we present the main elements of a newly developed seismic hazard model for Georgia. We started with the updating of the regionally harmonized datasets (i.e. earthquake catalogues, area seismic sources) with focus on data collected in the recent years. The seismogenic source model consists of two key components: area sources and active faults combined with background seismicity. The main features of the seismo-tectonic domains in the Caucasus region were summarized into three seismogenic classes (i.e. shallow crust, volcanic sources and deep seismicity). Given this classification, a set of ground motion prediction models was selected for each tectonic region and used to quantify the inherent uncertainties of ground motion. The probabilistic seismic hazard was computed for the entire region using the OpenQuake engine; the results including mean and quantile hazard maps, hazard curves and hazard spectra. Comparisons with previous probabilistic seismic hazard maps, followed by a discussion and outlook, conclude the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra 30(3):1025–1055

    Article  Google Scholar 

  • Abrahamson NA, Nicholas G, Kofi A (2016) BC hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra 32(1):23–44

    Article  Google Scholar 

  • Adamia S, Chkhotua T, Kekelia M et al (1981) Tectonics of the Caucasus and adjoining regions: implications for the evolution of the Tethys Ocean. J Struct Geol 3(4):437–447. https://doi.org/10.1016/0191-8141(81)90043-2

    Article  Google Scholar 

  • Adamia S, Mumladze T, Sadradze N et al (2008) Late Cenozoic tectonics and geodynamics of Georgia (SW Caucasus). Georgian Int J Sci Tech (Nova Science Publisher) 1(1):77–107

    Google Scholar 

  • Adamia S, Alania V, Chabukiani A et al (2010) Evolution of the late Cenozoic basins of Georgia (SW Caucasus): a review. In: Sosson M, Kaymakçı N, Stephenson R, Bergerat F (eds) Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian platform, Special Publication, vol 340. Geological Society, London, pp 239–259

    Google Scholar 

  • Adamia S, Zakariadze G, Chkhotua T et al (2011) Geology of the Caucasus: a review. Turk J Earth Sci 20:489–544

    Google Scholar 

  • Adamia S, Alania V, Tsereteli N et al (2017) Post-collisional tectonics and seismicity of Georgia. In: tectonic evolution, collision, and seismicity of Southwest Asia: in honor of manuel Berberian’s forty-five years of research contributions. Geol Soc Am Spec Pap 525:535–572

    Google Scholar 

  • Adams J, Trevor A, Stephen H et al (2019) Canada’s 6th generation seismic hazard model, as prepared for the 2020 national building code of Canada. Paper presented at the 12th Canadian Conference on Earthquake Engineering, Quebec City, 17–20 June 2019. http://earthquakescanada.nrcan.gc.ca/hazard-alea/recpubs-en.php

  • Akkar S, Çağnan Z (2010) A local ground-motion predictive model for Turkey, and its comparison with other regional and global ground-motion. Bull Seismol Soc Am 100:2978–2995

    Article  Google Scholar 

  • Akkar S, Sandikkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387

    Article  Google Scholar 

  • Allen M, Jackson J, Walker R (2004) Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics 23:1–16

    Google Scholar 

  • Allen T, Griffin J, Leonard M et al (2018) The 2018 national seismic hazard assessment for Australia: model overview. Geoscience Australia record 2018/27. https://d28rz98at9flks.cloudfront.net/123020/Rec2018_027.pdf

  • Anderson JG, Luco JE (1983) Consequences of slip rate constraints on earthquake occurrence relations. Bull Seismol Soc Am 73:471–496

    Google Scholar 

  • Apperson KD (1991) Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs. Science 254(5032):670–678

    Article  Google Scholar 

  • Atkinson GM, Bommer JJ, Abrahamson NA (2014) Alternative approaches to modeling epistemic uncertainty in ground motions in probabilistic seismic-hazard analysis. Seismol Res Lett 85(6):1141–1144

    Article  Google Scholar 

  • Balassanian S, Ashirov T, Chelidze T et al (1999) Seismic hazard assessment for the Caucasus test area. Ann di Geofis 42(6):1139–1164

    Google Scholar 

  • Banks C, Robinson A, Williams M (1997) Structure and regional tectonics of the Achara-Trialeti fold belt and the adjacent Rioni and Kartli foreland basins, Republic of Georgia. In: Robinson AG (ed) Regional and petroleum geology of the Black Sea and surrounding region, vol 68. American Association of Petroleum Geologists Memoir, Tulsa, pp 331–336

    Google Scholar 

  • Barth A, Wenzel F, Giardini D (2007) Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa. Geophys Res Lett 34:L15302. https://doi.org/10.1029/2007GL030359

    Article  Google Scholar 

  • Barth A, Wenzel F (2010) New constraints on the intraplate stress field of the Amurianplate deduced from light earthquake focal mechanisms. Tectonophysics 482:160–169. https://doi.org/10.1016/j.tecto.2009.01.029

    Article  Google Scholar 

  • Bazzurro P, Cornell CA (1999) Deaggregation of seismic hazard. Bull Seismol Soc Am 89:501–520

    Article  Google Scholar 

  • Beauval C, Bard PY, Hainzl S et al (2008) Can strong-motion observations be used to constrain probabilistic seismic-hazard estimates? Bull Seismol Soc Am 98:509–520. https://doi.org/10.1785/0120070006

    Article  Google Scholar 

  • Bindi D, Massa M, Luzi L et al (2014) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV and 5%-damped PSA at spectral periods up to 30 s using the RESORCE dataset. Bull Earthq Eng 12:391–430

    Article  Google Scholar 

  • Bolashvili N, Dittmann A, King L et al (eds) (2018) National Atlas of Georgia. Ivane Javakhishvili Tbilisi State University, Vakhushti Bagrationi Institute of Geography, Justus Liebig University of Giesses, Insitute for Geography

    Google Scholar 

  • Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthquake Spectra 24:997–1009. https://doi.org/10.1193/1.2977755

    Article  Google Scholar 

  • Boore DM, Stewart JP, Seyhan E et al (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra 30(3):1057–1085

    Article  Google Scholar 

  • Bozorgnia Y, Abrahamson NA, Atik LA et al (2014) NGA-West2 research project. Earthquake Spectra 30(3):973–987

    Article  Google Scholar 

  • Bradley BA (2013) A summary of the observed ground motions from the 21 July 2013 Mw 6.6 earthquake in Cook Strait, off the coast of Seddon. https://sites.google.com/site/brendonabradley/

  • Bune VI, Medvedev SV, Risnichenko YV et al (1974) Successes and hopes seismic zoning of the USSR. Izv Acad Sci USSR Phys Solid Earth 10:95–102

    Google Scholar 

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra 30(3):1087–1115

    Article  Google Scholar 

  • Cauzzi C, Faccioli E, Vanini M et al (2014) Updated predictive equations for broadband (0.01-10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthq Eng 13(6):1587–1612

    Article  Google Scholar 

  • Chelidze T, Javakhishvili Z, Varazanashvili O et al (2012) Seismic hazard assessment of Georgia (probabilistic approach). Institute of Geophysics, Academy of Sciences of Georgia

    Google Scholar 

  • Chiou BSJ, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 24:173–215

    Article  Google Scholar 

  • Chiou BSJ, Youngs RR (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 30(3):1117–1153

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Article  Google Scholar 

  • Danciu L, Giardini D (2015) Global seismic hazard assessment program-GSHAP legacy. Ann Geophys 58:1. https://doi.org/10.4401/ag-6734

    Article  Google Scholar 

  • Danciu L, Şeşetyan K, Demircioglu M et al (2018a) The 2014 earthquake model of the Middle East: seismogenic sources. Bull Earthq Eng 16(8):3465–3496

    Article  Google Scholar 

  • Danciu L, Kale Ö, Akkar S (2018b) The 2014 earthquake model of the Middle East: ground motion model and uncertainties. Bull Earthq Eng 16(8):3497–3533. https://doi.org/10.1007/s10518-016-9989-1

    Article  Google Scholar 

  • Delavaud E, Cotton F, Akkar S et al (2012) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16:451–473

    Article  Google Scholar 

  • DeMets C, Gordon R, Argus D et al (1990) Current plate motions. Geophys J Int 101:425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x

    Article  Google Scholar 

  • Demets C, Gordon R, Argus D et al (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. https://doi.org/10.1029/94GL02118

    Article  Google Scholar 

  • Douglas J (2018) Calibrating the backbone approach for the development of earthquake ground motion models. Paper presented at Best Practice in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations: Issues and Challenges Towards Full Seismic Risk Analysis, Cadarache, France, 14–17 May 2018

    Google Scholar 

  • Douglas J, Edwards B (2016) Recent and future developments in earthquake ground motion estimation. Earth Sci Rev 160:203–219

    Article  Google Scholar 

  • Eroğlu Azak T, Kalafat D, Şeşetyan K et al (2018) Effects of seismic declustering on seismic hazard assessment: a sensitivity study using the Turkish earthquake catalogue. Bull Earthq Eng 16(8):3339–3366. https://doi.org/10.1007/s10518-017-0174-y

    Article  Google Scholar 

  • Faccioli E, Bianchini A, Villani M (2010) New ground motion prediction equations for t>1 s and their influence on seismic hazard assessment. In: Proceedings of the University of Tokyo Symposium on Long- Period Ground Motion and Urban Disaster Mitigation, Tokyo, Japan, 17-18 March 2010

    Google Scholar 

  • Frankel A (1995) Map** seismic hazard in the central and eastern United States. Seismol Res Lett 66:8

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Article  Google Scholar 

  • Giardini D (1999) The global seismic Hazard assessment program (GSHAP) -1992/1999. Ann di Geofis 42(6):957–974

    Google Scholar 

  • Giardini D, Danciu L, Erdik M et al (2018) Seismic hazard map of the Middle East. Bull Earthq Eng 16(8):3567–3570. https://doi.org/10.1007/s10518-018-0347-3

    Article  Google Scholar 

  • Gorshkov GP (1938) On the seismic zoning of Middle Asia. Proc Inst Seismol AS USSR 79(6):67–71

    Google Scholar 

  • Gorshkov GP (1947) Scheme of seismic zoning of the USSR. In: Jubilee Collection, part I. AS USSR, p 454

    Google Scholar 

  • Gotsadze O, Varazanashvili O, Jibladze E (1996) Engineering analysis of the implications of the 1991 Racha earthquake in Georgia. Metsniereba Publ House, Tbilisi

    Google Scholar 

  • Grunthal G (1985) The updated earthquake catalogue for the German Democratic Republic and adjacent areas statistical data characteristics and conclusions for hazard assessment. In: Proceedings of the 3rd international symposium on the analysis of seismicity and on seismic risk, Prague, 17–22 June 1985, vol I

    Google Scholar 

  • Grunthal G, Stromeyer D, Bosse C et al (2018) The probabilistic seismic hazard assessment of Germany-version 2016, considering the range of epistemic uncertainties and aleatory variability. Bull Earthq Eng 16(10):4339–4395

    Article  Google Scholar 

  • Gubin IE (1950) Seismotectonic method of seismic zoning. Proc Geophys Inst AS USSR 13:140

    Google Scholar 

  • Gülen L, Sesetyan K, Adamia S et al (2014) Earthquake model of the Middle East (EMME) project: active faults and seismic sources. In: Abstract of the second European Conference on Earthquake Engineering and Seismology (2ECEES), Istanbul, Turkey, 24–29 August 2014

    Google Scholar 

  • Gusev AA (1991) About the need to adjust the documents regulating anti-seismic measures in the USSR. Integrated assessment of seismic hazard. Probl Earthq Eng 32:147–160

    Google Scholar 

  • Gusev AA, Shumilina LS (1995) Some problems concerning the methods of general seismic zoning. In: Seismicity and seismic zoning of North Eurasia, Moscow, vol 2–3. OIFZ RAN, pp 289–300

    Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:184–188

    Article  Google Scholar 

  • Idriss IM (2014) An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra 30(3):1155–1177

    Article  Google Scholar 

  • Jackson J, Ambraseys N (1997) Convergence between Eurasia and Arabia in eastern Turkey and the Caucasus. In: Giardini D, Balassanian S (eds) Historical and Prehistorical earthquakes in the Caucasus: North Atlantic Treaty Organization (NATO) Asian series 2, environment, vol 28. Kluwer Academic Publishers, Dordrecht, pp 79–90

    Chapter  Google Scholar 

  • Jibladze E, Butikashvili N, Tsereteli N (1995) Seismic regime, seismic hazard and seismotectonic deformation in the Caucasus. Institute of Geophysics, Georgian Academy of Sciences Press, Tbilisi

    Google Scholar 

  • Johnston AC, Coppersmith KJ, Kanter LR et al (1994) The earthquakes of stable continental regions, vol 1: assessment of large earthquake potential, Technical report TR-102261-V1. Electric Power Research Institute, pp 1–368

    Google Scholar 

  • Kadirioğlu FT, Kartal RF, Kılıç T et al (2018) An improved earthquake catalogue (M≥4.0) for Turkey and its near vicinity (1900–2012). Bull Earthq Eng 16:3317–3338

    Article  Google Scholar 

  • Kadirov F, Mammadov S, Reilinger R et al (2008) Some new data on modern tectonic deformation and active faulting in Azerbaijan (according to Global Positioning System measurements). Proc Azerbaijan Nat Acad Sci Earth Sci 1:82–88

    Google Scholar 

  • Kadirov F, Floyd M, Alizadeh A et al (2012) Kinematics of the Caucasus near Baku, Azerbaijan. J Nat Hazards 63:997–1006. https://doi.org/10.1007/s11069-012-0199-0

    Article  Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59(4):674–700. https://doi.org/10.2478/s11600-011-0012-6

    Article  Google Scholar 

  • Kotha SR, Bindi D, Cotton F (2016) Partially non-ergodic region specific GMPE for Europe and Middle-East. Bull Earthq Eng 4(4):1245–1263

    Article  Google Scholar 

  • Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100:1971–1988. https://doi.org/10.1785/0120090189

    Article  Google Scholar 

  • Lin PS, Lee CT (2008) Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bull Seismol Soc Am 98(1):220–240. https://doi.org/10.1785/0120060002

    Article  Google Scholar 

  • Lolli B, Gasperini P, Vannucci G (2014) Empirical conversion between teleseismic magnitudes (mb and Ms) and moment magnitude (Mw) at the Global, Euro-Mediterranean and Italian scale. Geophys J Int 199:805–828

    Article  Google Scholar 

  • Luen B, Stark PB (2012) Poisson tests of declustered catalogs. Geophys J Int 189(1):691–700. https://doi.org/10.1111/j.1365-246X.2012.05400.x

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A et al (2000) Global positioning system constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus. J Geophys Res 105(3):5695–5719. https://doi.org/10.1029/1999JB900351

    Article  Google Scholar 

  • McGuire RK (1995) Computations of seismic Hazard. Ann Geofis 36:181–200

    Google Scholar 

  • Medvedev SV (1947) On the problem of accounting of seismic activity of area at construction. In: Proceedings of Inst Seismol AS USSR, 119

    Google Scholar 

  • Medvedev SV (1958) Seismic zoning map of the USSR territory 1957. Proc Inst Phys Solid Earth Acad Sci USSR 1(158):3–28

    Google Scholar 

  • Meletti C, Marzocchi W, D’Amico V et al (2019) MPS19: the updated Italian Seismic Hazard model. In: Abstracts of the 2019 EGU General Assembly, Vienna, Austria, 7–12 April 2019. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-7372.pdf

  • Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:11517–11526

    Article  Google Scholar 

  • Mignan A, Danciu L, Giardini D (2015) Reassessment of the maximum fault rupture length of strike-slip earthquakes and inference on Mmax in the Anatolian Peninsula, Turkey. Seismol Res Lett 86(3):890–900

    Article  Google Scholar 

  • Mokrushina NG, Shebalin NV (1982) Assessment of the quality of seats strong shakings on seismic zoning map of the USSR. Probl Earthq Eng 23:97–113

    Google Scholar 

  • Mokrushina NG, Shebalin NV (1991) Assessment of the quality of seats strong shakings on seismic zoning map of the USSR. Part II. Map GSZ-78. Integrated assessment of seismic hazard. Probl Earthq Eng 31:122–125

    Google Scholar 

  • Monelli D, Pagani M, Weatherill G et al (2014) Modeling distributed seismicity for probabilistic seismic-hazard analysis: implementation and insights with the OpenQuake engine. Bull Seismol Soc Am 104(4):1636–1649. https://doi.org/10.1785/0120130309

    Article  Google Scholar 

  • Montalva GA, Bastías N, Rodriguez-Marek A (2017) Ground-motion prediction equation for the Chilean subduction zone. Bull Seismol Soc Am 107(2):901–911. https://doi.org/10.1785/0120160221

    Article  Google Scholar 

  • Mosar J, Kangarli T, Bochud M et al (2010) Cenozoic–recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. In: Sosson M, Kaymakçı N, Stephenson R, Bergerat F (eds) Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform, Special Publication, vol 340. Geological Society, London, pp 261–279

    Google Scholar 

  • Mumladze T, Forte AM, Cowgill ES et al (2015) Subducted, detached, and torn slabs beneath the Greater Caucasus. Geo Res J 5:36–46

    Google Scholar 

  • Musson RMW, Winter PW (1996) Seismic hazard maps for the U.K. Nat Hazards 14(2):141–154. https://doi.org/10.1007/BF00128262

    Article  Google Scholar 

  • Onur T, Gok R, Godoladze T et al (2019) Probabilistic seismic hazard assessment for Georgia. Technical report LLNL-TR-771451 963125. https://www.osti.gov/biblio/1511856-probabilistic-seismic-hazard-assessment-georgia

    Google Scholar 

  • Pagani M, Monelli D, Weatherill G et al (2014) OpenQuake-engine: an openhazard (and risk) software for the Global Earthquake Model. Seismol Res Lett 85:692–702. https://doi.org/10.1785/0220130087

    Article  Google Scholar 

  • Pagani M, Garcia-Peleaz J, Gee R, Johnson K, Poggi V, Silva V, Simionato M, Styron R, Vigano D, Danciu L, Monelli D, Weatherill G (2020) The 2018 version of the global earthquake model: Hazard component. Earthquake Spectra. https://doi.org/10.1177/8755293020931866

  • Pagani M, Garcia-Pelaez J, Gee R et al (2018) Global Earthquake Model (GEM) Seismic Hazard Map (version 2018.1 – December 2018). https://doi.org/10.13117/GEM-GLOBAL-SEISMIC-HAZARD-MAP-2018.1

  • Pasquaré F, Tormey D, Vezzoli L et al (2011) Mitigating the consequences of extreme events on strategic facilities: evaluation of volcanic and seismic risk affecting the Caspian oil and gas pipelines in the Republic of Georgia. J Env Manag 92:1774–1782

    Article  Google Scholar 

  • Petersen MD, Moschetti MP, Powers PM et al (2015) The 2014 United States national seismic hazard model. Earthquake Spectra 31:S1):S1–S1)S30. https://doi.org/10.1193/120814EQS210M

    Article  Google Scholar 

  • Rautian T (1964) About the determination of the earthquake energy in the distance to 3000 km. In: Riznichenko Y (ed) Experimental seismicity. Academy of Sciences of USSR, Moscow, pp 88–89

    Google Scholar 

  • Rautian T, Khalturin VI (1978) The use of coda for determination of the earthquake source spectrum. Bull Seismol Soc Am:68904–68922

    Google Scholar 

  • Reasenberg P (1985) Second-order moment of Central California seismicity, 1969–1982. J Geophys Res 90(7):5479–5495

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(B5):B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Risnichenko YV (1979) Seismic shaking of the USSR territory. Nauka Publ House, Moscow

    Google Scholar 

  • Riznichenko YV (1965) From the activity of earthquake sources to the shakeability of earth’s surface. Izv Acad Sci USSR Phys Solid Earth 11:1–12

    Google Scholar 

  • Sargsyan GV, Abgaryan GR, Mkhitaryan KA et al (2017) Seismic conditions of the territory of Armenia and adjacent areas after the 1988 Spitak earthquake. Gyumri, Pub House of Eldorado Seismic Zoning of the USSR (1968). Moscow, Nauka Publ House

    Google Scholar 

  • Seismicheskoe raionirovanie territorii SSSR (1980) Metodicheskieosnovyi regionalnoe opisanie karty 1978 goda (seismic zoning of the USSR territory: underlying methods and regional legend of the map of 1978). Nauka Publ House, Moscow

    Google Scholar 

  • Sesetyan K, Danciu L, Demircioglu MB et al (2018a) The 2014 Seismic hazard model of the Middle East: overview and results. Bull Earthq Eng 16(8):3535–3566. https://doi.org/10.1007/s10518-018-0346-4

    Article  Google Scholar 

  • Sesetyan K, Demircioğlu MB, Duman TY et al (2018b) A probabilistic seismic hazard assessment for the Turkish territory-part I: the area source model. Bull Earthq Eng 16(8):3367–3397. https://doi.org/10.1007/s10518-016-0005-6

    Article  Google Scholar 

  • Shebalin NV, Trifonov VG, Kozhurin AI et al (2000) A unified seismotectonic zonation of Northern Eurasia. J Earthq Predict Res 8:8–31

    Google Scholar 

  • Slejko D, Javakhishvili Z, Rebez A et al (2008) Seismic hazard assessment for the Tbilisi test area (eastern Georgia). Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste (Italy) 49:37–58

    Google Scholar 

  • Sokhadze G, Floyd M, Godoladze T et al (2018) Active convergence between the Lesser and Greater Caucasus in Georgia: constraints on the tectonic evolution of the Lesser–Greater Caucasus continental collision. Earth Planet Sci Lett 481:154–161. https://doi.org/10.1016/j.epsl.2017.10.007

    Article  Google Scholar 

  • Sosson M, Rolland Y, Danelian T et al (2010) Subductions, obduction and collision in the Lesser Caucasus (Armenia Azerbaijan, Georgia), new insights. In: Sosson M, Kaymakci N, Stephanson R, Bergarat F, Storatchenoko V (eds) Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform, Special Publication, vol 340. Geological Society of London, London, pp 329–352

    Google Scholar 

  • Stepp JC (1972) Analysis of the completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of the international Conf on microzonation for safer construction: research and application, Seattle, Washington, 30 October-3 November 1972, vol 64, pp 1189–1207

    Google Scholar 

  • Storchak DA, Di Giacomo D, Bondár I et al (2015) ISC-GEM global instrumental earthquake catalogue (1900–2009). Phys Earth Planet Inter 239:48–63. https://doi.org/10.1016/j.pepi.2014.06.009

    Article  Google Scholar 

  • Tan O, Taymaz T (2006) Active tectonics of the Caucasus: earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. In: Dilek Y, Pavlides S (eds) Postcollisional tectonics and magmatism in the Mediterranean region and Asia, Special Paper, vol 409. Geological Society of America, Boulder, pp 531–578

    Google Scholar 

  • Tibaldi A, Alania V, Bonali FL et al (2017a) Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia. J Struct Geol 96:35–53

    Article  Google Scholar 

  • Tibaldi A, Russo E, Bonali FL et al (2017b) 3-D anatomy of an active fault-propagation fold: a multidisciplinary case study from Tsaishi, western Caucasus (Georgia). Tectonophysics 717:253–269

    Article  Google Scholar 

  • Tibaldi A, Bonali FL, Russo E et al (2018) Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia. J Asian Earth Sci 156:226–245

    Article  Google Scholar 

  • Tibaldi A, Tsereteli N, Varazanashvili O et al (2020) Active stress field and fault kinematics of the Greater Caucasus. J Asian Earth Sci 188:104108. https://doi.org/10.1016/j.jseaes.2019.104108

    Article  Google Scholar 

  • Triep EG, Abers GA, Lerner-Lam AL et al (1995) Active thrust front of the Greater Caucasus: the April 29, 1991, Racha earthquake sequence and its tectonic implications. J Geophys Res 100(B3):4011–4033. https://doi.org/10.1029/94JB02597

    Article  Google Scholar 

  • Tsereteli N, Varazanashvili O, Arabidze V et al (2011) Seismic risk assessment for Tbilisi – new approaches. In: Avagyan A, Barry DL, Coldewey WG, Reimer DWG (eds) Stimulus for human and societal dynamics in the prevention of catastrophes, vol 80. IOS Press, Amsterdam, pp 109–130

    Google Scholar 

  • Tsereteli N, Tanircan G, Safak E et al (2012) Seismic hazard assessment for southern Caucasus – Eastern Turkey energy corridors: the example of Georgia. In: Barry DL, Coldewey WG, Reimer DWG, Rudakov DV (eds) Correlation between human factors and the prevention of disasters, vol 94. IOS Press, Amsterdam, pp 96–111

    Google Scholar 

  • Tsereteli N, Arabidze V, Varazanashvili O et al (2014) Vulnerability analysis and GIS based seismic risk assessment Georgia case. Improving disaster resilience and mitigation-IT Meansand tools. In: NATO science for peace and security, series C, environmental security, vol 143. Springer, Dordrecht, pp 307–321. http://springer.longhoe.net/chapter/10.1007/978-94-017-9136-6_20#page-1

    Google Scholar 

  • Tsereteli N, Tibaldi A, Alania V et al (2016a) Active tectonics of central-western Caucasus, Georgia. Tectonophysics 691:328–344. https://doi.org/10.1016/j.tecto.2016.10.025

    Article  Google Scholar 

  • Tsereteli N, Askan A, Hamzehloo H (2016b) Hybrid-empirical ground motion estimations for Georgia. Acta Geophys 64(5):1225–1256. https://doi.org/10.1515/acgeo-2016-0048

    Article  Google Scholar 

  • Tsipenyuk IF (1988) Damageability and reliability of large-panel buildings under seismic actions. Investigations on seismic hazard. Probl Earthq Eng 29:141–153

    Google Scholar 

  • Uhrhammer R (1986) Characteristics of Northern and Central California Seismicity. Earthq Notes 57(1):21

    Google Scholar 

  • Ulomov VI, Shumilina LS (1999) Komplekt kart obshchego seismicheskogo raionirovaniya territorii Rossiiskoi Federatsii OSR-97. Masshtab 1: 8000000. Obyasnitelnaya zapiska i spisok gorodovi naselennykh punktov, raspolozhennykh v seismo opasnykhraionakh (A Set of 1:8000000 General Seismic Zoning Maps of the Russian Federation (GSZ-97): Explanatory Note and the List of Towns and Settlements Located in Regions of Seismic Hazard), Moscow, OIFZ

    Google Scholar 

  • Varazanashvili O (1999) Seismic hazard assessment of Georgia by deterministic and probabilistic methods. J Georgian Geophys Soc (A) 4:35–45

    Google Scholar 

  • Varazanashvili O, Tsereteli N, Amiranashvili A et al (2012) Vulnerability, hazards and multiple risk assessment for Georgia. J Nat Hazards 64(3):2021–2056. https://doi.org/10.1007/s11069-012-0374-3

    Article  Google Scholar 

  • Varazanashvili O, Tsereteli N, Bonali FL et al (2018) GeoInt: the first macroseismic intensity database for the Republic of Georgia. J Seismol 22(3):625–667

    Article  Google Scholar 

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Westen CJ, Straatsma M, Turdukulov U et al (2012) Atlas of natural hazards and risks of Georgia: e-book. Caucasus Environmental NGO Network (CENN), Tbilisi

    Google Scholar 

  • Wheeler RL (2009) Methods of Mmax estimation east of the Rocky mountains. Open-File Report 2009-1018, prepared with funding from the U.S. Nuclear Regulatory Commission. https://doi.org/10.3133/ofr20091018

  • Wiemer S (2001) A software package to analyse seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Article  Google Scholar 

  • Wiemer S, Danciu L, Edwards B et al (2016) Seismic Hazard Model 2015 for Switzerland (SUIhaz2015). Report, Swiss Seismological Service (SED) at ETH Zurich. https://doi.org/10.12686/a2

    Google Scholar 

  • Woessner J, Danciu L, Giardini D et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596

    Article  Google Scholar 

  • Youngs RR, Chiou BSJ, Silva WJ et al (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68:58–73

    Article  Google Scholar 

  • Zare M, Amini H, Yazdi P et al (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772. https://doi.org/10.1007/s10950-014-9444-1

    Article  Google Scholar 

  • Zhao JX, Zhang J, Asano A et al (2006) Attenuation relations of strong ground motion in Japan using site classifications based on predominant period. Bull Seismol Soc Am 96:898–913

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our special thanks to Dr. Marco Pagani for his support, to the Editors of this Special Issue as well as the reviewers for their insightful comments, which significantly helped us to improve the quality of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Tsereteli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsereteli, N. et al. (2021). The 2020 National Seismic Hazard Model for Georgia (Sakartvelo). In: Bonali, F.L., Pasquaré Mariotto, F., Tsereteli, N. (eds) Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2046-3_8

Download citation

Publish with us

Policies and ethics

Navigation