Log in

Impact of Carbon Chain Structures in the Backbone on the Flexibility of Modified Polyarylene Sulfide Resins: Molecular Dynamics Simulations and Mesoscopic Analysis

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In the domain of high-performance engineering polymers, the enhancement of mechanical flexibility in poly(phenylene sulfide) (PPS) resins has long posed a significant challenge. A novel molecular structure, designated as PP-He-IS, wherein imide rings and an aliphatic hexylene chain are covalently incorporated into the PPS backbone to enhance its flexibility, is introduced in this study. Molecular dynamics (MD) simulations are employed to systematically explore the effects of diversifying the backbone chain structures by substituting phenyl units with alkyl chains of varying lengths, referred to as PP-A-IS where “A” signifies the distinct intermediary alkyl chain configurations. Computational analyses reveal a discernable decrement in the glass transition temperature (Tg) and elastic modulus, counterbalanced by an increment in yield strength as the alkyl chain length is extended. Notably, the PP-He-IS variant is shown to exhibit superior yield strength while simultaneously maintaining reduced elastic modulus and Tg values, positioning it as an advantageous candidate for flexible PPS applications. Mesoscopic analyses further indicate that structures such as PP-He-IS, PP-Pe-IS, and PP-Bu-IS manifest remarkable flexibility, attributable to the presence of freely rotatable carbon-carbon single bonds. Experimental validation confirms that a melting temperature of 504 K which is lower than that of conventional PPS, and lower crystallinity are exhibited by PP-He-IS, thereby affording enhanced processability without compromising inherent thermal stability. Novel insights into the strategic modification of PPS for mechanical flexibility are thus furnished by this study, which also accentuates the pivotal role played by molecular dynamics simulations in spearheading high-throughput investigations in polymer material modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

References

  1. Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Polyphenylene sulfide (PPS): state of the art and applications. Rev. Chem. Eng. 2013, 29, 6.

    Article  Google Scholar 

  2. Maaroufi, M. A.; Carpier, Y.; Vieille, B.; Gilles, L.; Coppalle, A.; Barbe, F. Post-fire compressive behaviour of carbon fibers woven-Ply polyphenylene sulfide laminates for aeronautical applications. Compos. Part B Eng. 2017, 119, 101–113.

    Article  CAS  Google Scholar 

  3. Zhao, L.; Yu, Y.; Huang, H.; Yin, X.; Peng, J.; Sun, J.; Huang, L.; Tang, Y.; Wang, L. High-performance polyphenylene sulfide composites with ultra-high content of glass fiber fabrics. Compos. Part B Eng. 2019, 174, 106790.

    Article  Google Scholar 

  4. Vieille, B.; Chabchoub, M.; Bouscarrat, D.; Keller, C. Prediction of the notched strength of woven-ply polyphenylene sulfide thermoplastic composites at a constant high temperature by a physically-based model. Compos. Struct. 2016, 153, 529–537.

    Article  Google Scholar 

  5. Furushima, Y.; Nakada, M.; Yoshida, Y.; Okada, K. Crystallization/melting kinetics and morphological analysis of polyphenylene sulfide. Macromol. Chem. Phys. 2018, 219, 1700481.

    Article  Google Scholar 

  6. Kyriacos, D. High-Temperature Engineering Thermoplastics. In Brydson’s Plastics Materials. Elsevier, 2017, pp. 545–615.

  7. Chen, C.; Liu, C.; Zhang, G.; Yang, J.; Long, S. Synthesis and characterization of polyarylene sulfide sulfone/ketone amide. Front. Chem. China 2009, 4, 114–119.

    Article  Google Scholar 

  8. Lei, H.; Qi, S.; Wu, D. Hierarchical multiscale analysis of polyimide films by molecular dynamics simulation: investigation of thermomechanical properties. Polymer 2019, 179.

  9. Lin, D.; Jiang, M.; Qi, S.; Wu, D. Macromolecular structural evolution of polyimide chains during large-ratio uniaxial fiber orientation process revealed by molecular dynamics simulation. Chem. Phys. Lett. 2020, 756, 137847.

    Article  CAS  Google Scholar 

  10. Wen, C.; Liu, B.; Wolfgang, J.; Long, T. E.; Odle, R.; Cheng, S. Determination of glass transition temperature of polyimides from atomistic molecular dynamics simulations and machine-learning algorithms. J. Polym. Sci. 2020, 58, 1521–1534.

    Article  CAS  Google Scholar 

  11. Chen, Q.; Yang, J.; Long, S. Synthesis and characterization of novel polyarylene sulfide. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2007, 22, 276–278.

    Article  CAS  Google Scholar 

  12. Yan, G.; Li, Z.; Zhang, G.; Ren, H.; Yuan, S.; Li, Y.; Yang, J. High molecular weight poly(p-arylene sulfide ketone): synthesis and membrane-forming properties. J. Polym. Res. 2016, 23, 61.

    Article  Google Scholar 

  13. Inoue, T.; Kumagai, Y. “High-pressure synthesis and properties of aliphatic–aromatic polyimides via nylon-salt-type monomers derived from aliphatic diamines with pyromellitic acid and biphenyltetracarboxylic acid. Macromolecules 1997, 30, 1921.

    Article  CAS  Google Scholar 

  14. Di, X.; Fang, L.; Lin, Q.; Zhang, T.; Zhou, X. Synthesis and characterization of silane-grafted polyphenylene sulfide. High Perform. Polym. 2014, 26, 97–105.

    Article  Google Scholar 

  15. Chanda, M. Plastics Technology Handbook, Fifth Ed. CRC Press; 2017.

  16. Martín, Mariano Martín, Mario R. Eden, and Nishanth G. Chemmangattuvalappil, eds. Tools for Chemical Product Design: From Consumer Products to Biomedicine. Elsevier, 2016, 39.

  17. Martin, M. G. Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities. Fluid Phase Equilibria 2006, 248, 50–55.

    Article  CAS  Google Scholar 

  18. Sun, H. COMPASS: An Ab Initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364.

    Article  CAS  Google Scholar 

  19. Rigby, D. Fluid density predictions using the COMPASS force field. Fluid Phase Equilibria 2004, 217, 77–87.

    Article  CAS  Google Scholar 

  20. Cai, P.; Xu, C.; Zheng, F.; Song, J.; Zhao, G. Molecular dynamics study on the mechanical and tribological properties of polyimide reinforced by Lanthana. Ind. Lubr. Tribol. 2021, 73, 1319–1324.

    Article  Google Scholar 

  21. Li, H.; Cai, Z.; Zhou, F.; Liu, D. MD simulation analysis of the anchoring behavior of injection-molded nanopits on polyphenylene sulfide/Cu interface. Compos. Interfaces 2022, 29, 431–446.

    Article  CAS  Google Scholar 

  22. Sun, H.; **, Z.; Yang, C.; Akkermans, R. L. C.; Robertson, S. H.; Spenley, N. A.; Miller, S.; Todd, S. M. COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47.

    Article  PubMed  Google Scholar 

  23. Kreer, T.; Baschnagel, J.; Müller, M.; Binder, K. Monte Carlo simulation of long chain polymer melts: crossover from rouse to reptation dynamics. Macromolecules 2001, 34, 1105–1117.

    Article  CAS  Google Scholar 

  24. Garbarczyk, J.; Kamyszek, G. Refinement of molecular and crystal structure of poly-(p-phenylene suiphide ether). In X-Ray Investigations of Polymer Structures 1997, 3095, 107–110.

    Article  CAS  Google Scholar 

  25. Lee, S.; Shin, S.-J.; Baek, H.; Choi, Y.; Hyun, K.; Seo, M.; Kim, K.; Koh, D. Y.; Kim, H.; Choi, M. Dynamic metal-polymer interaction for the design of chemoselective and long-lived hydrogenation catalysts. Sci. Adv. 2020, 6, 7369.

    Article  Google Scholar 

  26. Zhang, T.; Huang, H.; Li, W.; Chang, X.; Cao, J.; Hua, L. Vulcanization modeling and mechanism for improved tribological performance of styrene-butadiene rubber at the atomic scale. Tribol. Lett. 2020, 68, 83.

    Article  CAS  Google Scholar 

  27. Zhou, M.; Jiang, B.; Weng, C. Molecular dynamics study on polymer filling into nano-cavity by injection molding. Comput. Mater. Sci. 2016, 120, 36–42.

    Article  CAS  Google Scholar 

  28. Nazarychev, V. M.; Lyulin, A. V.; Larin, S. V.; Gurtovenko, A. A.; Kenny, J. M.; Lyulin, S. V. Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides. Soft Matter 2016, 12, 3972–3981.

    Article  CAS  PubMed  Google Scholar 

  29. Nazarychev, V. M.; Dobrovskiy, A. Y.; Larin, S. V.; Lyulin, A. V.; Lyulin, S. V. Simulating local mobility and mechanical properties of thermostable polyimides with different dianhydride fragments. J. Polym. Sci., Part B:Polym. Phys. 2018, 56, 375–382.

    Article  CAS  Google Scholar 

  30. Zhang, M.; **n, Y.; Gao, J. S.; Shiu, S. C.; Tsai, J. L. Mechanical properties of polymer near graphite sheet. J. Compos. Mater. 2013, 47, 449–458.

    Article  CAS  Google Scholar 

  31. Yamakawa, H. Modern Theory of Polymer Solutions; Harper & Row, 1971.

  32. Baker, D. L.; Reynolds, M.; Masurel, R.; Olmsted, P. D.; Mattsson, J. Cooperative intramolecular dynamics control the chain-length-dependent glass transition in polymers. Phys. Rev. X 2022, 12, 021047.

    CAS  Google Scholar 

  33. Kroy, K.; Glaser, J. The glassy wormlike chain. New J. Phys. 2007, 9, 416–416.

    Article  Google Scholar 

  34. Baschnagel, J.; Meyer, H.; Wittmer, J.; Kulić, I.; Mohrbach, H.; Ziebert, F.; Nam, G. M.; Lee, N. K.; Johner, A. Semiflexible chains at surfaces: worm-like chains and beyond. Polymers 2016, 8, 286.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ou, Y. J.; Wang, X. M.; Li, C. L.; Zhu, Y. L.; Li, X. L. The Effects of alkali and temperature on the hydrolysis rate of N-methylpyrrolidone. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012036.

    Article  Google Scholar 

  36. Li, H. C.; Liu, D. L.; Luo, X.; Yuan, T.; Zhan, K.; Gan, J. Enhanced adhesion properties of polymer-metal interfaces via nano-injection molding: a study on molecular kinematic mechanisms. Chinese J. Polym. Sci. 2023, 41, 981–993.

    Article  CAS  Google Scholar 

  37. He, Z.; Ren, H.; Li, J.; Huang, T.; Zhang, S.; Liu, P. Optimization of structure and properties of polyphenylene sulfide porous membrane by controlling the process of thermally induced phase separation. Polym. Int. 2020, 69, 813–821.

    Article  CAS  Google Scholar 

  38. Li, D.; Panchal, K.; Mafi, R.; **, L. An atomistic evaluation of the compatibility and plasticization efficacy of phthalates in poly(vinyl chloride). Macromolecules. 2018, 51, 6997–7012.

    Article  CAS  Google Scholar 

  39. Fryd, M. Structure-Tg relationship in polyimides. In Polyimides; Mittal, K. L., Ed.; Springer US: Boston, MA, 1984; pp. 377–383.

    Chapter  Google Scholar 

  40. Canel, T.; Bağlan, İ.; Sinmazcelik, T. Mathematical modelling of laser ablation of random oriented short glass fiber reinforced polyphenylene sulphide (PPS) polymer composite. Opt. Laser Technol. 2019, 115, 481–486.

    Article  CAS  Google Scholar 

  41. Desio, G. P.; Rebenfeld, L. Effects of fibers on the crystallization of poly(phenylene sulfide). J. Appl. Polym. Sci. 1990, 39, 825–835.

    Article  CAS  Google Scholar 

  42. Li, X.; Xu, D.; Gong, N.; Xu, Z.; Wang, L.; Dong, W. Improving the strength of injection molded aluminum/polyphenylene sulfide lap joints dependence on surface microstructure and composition. Mater. Des. 2019, 179, 107875.

    Article  Google Scholar 

  43. Socrates, G. in Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Ed., Wiley: Chichester, 2010.

    Google Scholar 

  44. Lange’s Handbook of Chemistry, 16th ed., 70th Anniversary ed.; Speight, J. G., Lange, N. A., Eds.; McGraw-Hill standard handbooks; McGraw-Hill: New York, 2005.

    Google Scholar 

  45. Budgell, D. R.; Day, M.; Cooney, J. D. Thermal degradation of poly(phenylene sulfide) as monitored by pyrolysis—GC/MS. Polym. Degrad. Stabil. 1994, 43, 109–115.

    Article  CAS  Google Scholar 

  46. López, L. C.; Wilkes, G. L.; Geibel, J. F. Crystallization kinetics of poly(p-phenylene sulphide): the effect of branching agent content and endgroup counter-atom. Polymer 1989, 30

  47. Napolitano, R.; Pirozzi, B.; Salvione, A. Crystal structure of poly(p-phenylene sulfide): a refinement by X-ray measurements and molecular mechanics calculations. Macromolecules 1999, 32, 7682–7687.

    Article  CAS  Google Scholar 

  48. Goyal, S.; Park, H. H.;, and Lee S. H. Characterizing the fundamental adhesion of polyimide monomers on crystalline and glassy silica surfaces: a molecular dynamics study. J. Phys. Chem. C 2016, 120, 23631–23639.

    Article  CAS  Google Scholar 

  49. Silvestre, C.; Di Pace, E.; Napolitano, R.; Pirozzi, B.; Cesario, G. Crystallization, morphology, and thermal behavior of poly(p-phenylene sulfide). J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 415–424.

    Article  CAS  Google Scholar 

  50. Yang, Y.; Duan, H.; Zhang, G.; Long, S.; Yang, J.; Wang, X. Effect of the contribution of crystalline and amorphous phase on tensile behavior of poly(phenylene sulfide). J. Polym. Res. 2013, 30, 198.

    Article  Google Scholar 

  51. Lu, D.; Yang, Y.; Zhuang, G.; Zhang, Y.; Li, B. A study of high-impact poly(phenylene sulfide), 1. The effect of its crystallinity on its impact properties. Macromol. Chem. Phys. 2001, 202, 734–738.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers, whose comments have helped improve the presentation of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Wei Jiang.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

10118_2024_3072_MOESM1_ESM.pdf

Impact of Carbon Chain Structures in the Backbone on the Flexibility of Modified Polyarylene Sulfide Resins: Molecular Dynamics Simulations and Mesoscopic Analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Liu, R., Liu, JY. et al. Impact of Carbon Chain Structures in the Backbone on the Flexibility of Modified Polyarylene Sulfide Resins: Molecular Dynamics Simulations and Mesoscopic Analysis. Chin J Polym Sci 42, 544–557 (2024). https://doi.org/10.1007/s10118-024-3072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3072-1

Keywords

Navigation