Log in

High molecular weight poly(p-arylene sulfide ketone): synthesis and membrane-forming properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

High-molecular-weight poly(p-arylene sulfide ketone) (PPSK) was prepared by nucleophilic substitution reaction of 4,4’-diflurobenzophenone (DFBP) and sodium sulfide in the compound solvents of diphenyl sulfone (DPS) and 1,3-dimethyl-2-imidazolidinone (DMI) with catalysts under elevated temperature. The inherent viscosity (ηint) of the PPSK synthesized was 0.703 dl/g. PPSK was characterized by Fourier-transform infrared spectroscopy, elemental analysis, x-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. It was found that the polymer had excellent thermal properties: glass transition temperature (Tg) was 142.8 °C, melting temperature (Tm) was 362.3 °C. Under nitrogen atmosphere, 5 % (T5%) and 10 % (T10%) weight-loss temperatures were about 498.5 °C and 526.2 °C, respectively, while in the air the T5% and T10% were about 517 °C and 535.8 °C, respectively. The PPSK was found to be a semi-crystalline polymer, as confirmed by XRD. The polymer was insoluble in any solvent except concentrated sulfuric acid at room temperature. A series of the PPSK separating membranes were prepared by dissolving PPSK to concentrated sulfuric acid. The fluxes and the porosities of the separating membranes were in the range of 230–43 L/(m2 · h) and 77.7-84.7 %, respectively. At the same time, these separating membranes showed moderate tensile strength of 1.02-1.88 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hergenrother PM (2003) High Perform Polym 15:3–45

    CAS  Google Scholar 

  2. Stoeffler K, Andjelic S, Legros N, Roberge J, Schougaard SB (2013) Comput Sci Technol 84:65–71

    Article  CAS  Google Scholar 

  3. Lu SX, Cebe PJ (1977) J Therm Anal 49:525–533

    Article  Google Scholar 

  4. Edmonds JT, Hill (1977) US patent 3354129

  5. Campbell RW, Edmonds JT (1977) US patent 4038259

  6. Krefeld KI, Korschenbroich JM (1981) US patent 4303781

  7. Schmidt M, Tresper E, Alewelt W, Dorf EU (1991) US patent 5037952

  8. Wang HD, Yang J, Long SR, Du ZY, Chen YR (2003) Polym Mater Sci Eng 19(3):54–57

    Google Scholar 

  9. Xu SX, Yang J, Long SR, Chen YR, Li GX (2005) Polym Bull 54:251–261

    Article  CAS  Google Scholar 

  10. Wang HD, Yang J, Long SR (2004) Polym Degrad Stab 83(2):229

    Article  CAS  Google Scholar 

  11. Bobsein RL (1989) US patent 4808698

  12. Liu Y, Bhatnagar A, Ji Q, Riffle JS, McGrath JE, Geibel JF, Kashiwagi T (2000) Polymer 41:5137–5146

    Article  CAS  Google Scholar 

  13. Wang XJ, Yu QQ, Huang HM, Yang J, Li GX (2010) Polym Mater Sci Eng 26(10):140–143

    Google Scholar 

  14. Li ZM, Zhang G, Li Y, Yang J (2015) J Polym Res 22:75

    Article  Google Scholar 

  15. Zhang G, Yuan SS, Li ZM, Long SR, Yang J (2014) RSC Adv 4:23191–23201

    Article  CAS  Google Scholar 

  16. Zhang G, Ren HH, Li DS, Long SR, Yang J (2013) Polymer 54:601–606

    Article  CAS  Google Scholar 

  17. Zhang G, Li DS, Huang GS, Wang XJ, Long SR, Yang J (2011) React Funct Polym 71:775–781

    Article  CAS  Google Scholar 

  18. Yoshikatsu S, Takashi K, Yutaka K (1997) EP patent 0293115

  19. Gaughan RG (1987) US patent 4716212

  20. Feasey RG, England K (1974) US patent 3819582

  21. Geibel JF, Okla B (1992) US patent 5109102

  22. Tomagou S, Kato T, Ogawara K (1992) US patent 5097003

  23. Yoshikatsu S, Ken K (1995) EP patent 0296877

  24. Toshiya M (1991) EP patent 0347062

  25. Durvasula VR, Stuber FA, Bhattacharjee D (1989) J Polym Sci A Polym Chem 27:661–669

    Article  CAS  Google Scholar 

  26. Senn DR (1994) J Polym Sci A Polym Chem 30:1175–1183

    Article  Google Scholar 

  27. Kim MS, Kim DJ, Jeon IR, Seo KH (2000) J Appl Polym Sci 76:1329–1337

    Article  CAS  Google Scholar 

  28. Wang YL, Zhang G, Zhang ML, Fan Y, Liu BY, Yang J (2012) Chin J Polym Sci 20(3):370–377

    Article  Google Scholar 

  29. Nowak KM (1989) Desalination 71(2):83–95

    Article  Google Scholar 

  30. Li YF, Su YL, Zhao XT, He X, Zhang RN, Zhao JJ, Fan XC, Jiang ZY (2014) ACS Appl Mater Interfaces 6:5548–5557

    Article  CAS  Google Scholar 

  31. Zhou C, Hou ZC, Lu XF, Liu ZY, Bian XK, Shi LQ, Li L (2010) Ind Eng Chem Res 49:9988–9997

    Article  CAS  Google Scholar 

  32. Tarboush BJ, Rana D, Matsuura T, Arafat HA, Narbaitz RM (2008) J Membr Sci 325:166–175

    Article  CAS  Google Scholar 

  33. Qu P, Tang HW, Gao Y, Zhang LP, Wang SQ (2010) Bioresour 5(4):2323–2336

    CAS  Google Scholar 

  34. Colquhoun HM, Lewis DF, Williams DJ (1999) Polymer 40:5415–5420

    Article  CAS  Google Scholar 

  35. Yin WY, Ma HX, Ren JH, Ren ML, Zhang HM, Yang XZ (1998) Eng Plast Appl 26(7):18–20

    Google Scholar 

  36. Sun MP, Su YL, Mu CX, Jiang ZY (2010) Ind Eng Chem Res 49:790–796

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Zhang or Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Gm., Li, Zm., Zhang, G. et al. High molecular weight poly(p-arylene sulfide ketone): synthesis and membrane-forming properties. J Polym Res 23, 61 (2016). https://doi.org/10.1007/s10965-016-0948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0948-y

Keywords

Navigation