Log in

Enhanced Adhesion Properties of Polymer-Metal Interfaces via Nano-injection Molding: A Study on Molecular Kinematic Mechanisms

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Nano-injection molding enables the formation of nano-scale anchors to connect heterogeneous material surfaces to achieve the required mechanical properties. In this work, polyphenylene sulfide (PPS), aluminum (Al), copper (Cu), and iron (Fe) were selected as candidate polymer and metal materials. Three kinds of polymer-metal interfacial models with pyramidal nano-slots were modeled. The molecular dynamics simulations were launched to investigate the adhesion properties and molecular kinematic mechanisms of heterogeneous interfaces in nano-injection molding. Results showed that the wall-slip** behavior of PPS at the interface slot was obvious, it was easy to form multiple-anchor-points in the central area of substrates, and these anchor points were easily slip** along the wall, different from the de Gennes model. The atomic lattice and atomic band gap of metal affected the adhesion strength. The BCC lattice of Fe was more suitable for nano-injection molding process than the FCC lattice of Al and Cu. The filling rate, interfacial energy, the tensile and shear failures data revealed that the interfacial adhesion performances decreased according to the following order, Fe-PPS, Cu-PPS and Al-PPS components, respectively, and the interface failure mode was closely related to the stress loading mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grujicic, M.; Sellappan, V.; Omar, M. A.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Technol. 2008, 197, 363–373.

    Article  CAS  Google Scholar 

  2. Maghsoudi, K.; Jafari, R.; Momen, G.; Farzaneh, M. Micronanostructured polymer surfaces using injection molding: a review. Mater. Today Commun. 2018, 13, 126–143.

    Article  Google Scholar 

  3. Zhang, N.; Byrne, C. J.; Browne, D. J.; Gilchrist, M. D. Towards nano-injection molding. Mater. Today. 2012, 15, 216–221.

    Article  CAS  Google Scholar 

  4. Hopmann, C.; Behmenburg, C.; Recht, U.; Zeuner, K. Towards nano-injection molding. Silicon 2014, 6, 35–43.

    Article  CAS  Google Scholar 

  5. Li, X. P.; Ye, X.; Gong, N. N.; Yang, W. J.; Li, M. J.; Wang, X. M.; Yang, C. Enhanced thermal properties of polyamide 6, 6 composite/aluminum hybrid via injection joining strategy. Int. Commun. Heat Mass Transf. 2020, 116, 104696.

    Article  CAS  Google Scholar 

  6. Gao, Y. Y.; Hu, F. Y.; Wu, Y. P.; Liu, J.; Zhang, L. Q. Understanding the structural evolution under the oscillatory shear field to determine the viscoelastic behavior of nanorod filled polymer nanocomposites. Comput. Mater. Sci. 2017, 142, 192–199.

    Article  Google Scholar 

  7. Zhang, T.; Huang, H. B.; Li, W.; Chang, X. D.; Cao, J.; Hua, L. C. Vulcanization modeling and mechanism for improved tribological performance of styrene-butadiene rubber at the atomic scale. Tribol. Lett. 2021, 68, 83.

    Article  Google Scholar 

  8. Liang, Z. B.; Jiang, Y. C.; Gong, X.; Gong, H. R. Atomistic modelling of the immiscible Fe-Bi system from a constructed bond order potential. J. Phys. Condes. Matter. 2021, 34, 025901.

    Article  Google Scholar 

  9. Salli, D.; Motta, S.; Di, V. C. Impact of surface curvature, grafting density and solvent type on the PEGylation of titanium dioxide nanoparticles. J. Colloid Interface Sci. 2019, 555, 519–531.

    Article  Google Scholar 

  10. Zhao, P. H.; Li, X. G.; Tong, Y.; Dong, X. F.; Qi, M. Effect of the interface between magnetic particles and carrier liquids on magnetorheological properties and sedimentation of magnetorheological fluids: a molecular dynamics simulation and experimental insights. J. Mol. Liq. 2021, 342, 117377.

    Article  CAS  Google Scholar 

  11. Wang, H.; Tao, J.; **, K. The effect of MWCNTs with different diameters on the interface properties of Ti/CFRP fiber metal laminates. Compos. Struct. 2021, 266, 113818.

    Article  CAS  Google Scholar 

  12. Zhou, X.; Bu, W. M.; Song, S. Y.; Sansoz, F.; Huang, X. R. Multiscale modeling of interfacial mechanical behaviours of SiC/Mg nanocomposites. Mater. Des. 2019, 182, 108093.

    Article  CAS  Google Scholar 

  13. Wand, C. R.; Gibbon, S.; Siperstein, F. R. Adsorption of epoxy oligomers on iron oxide surfaces: the importance of surface treatment and the role of entropy. Langmuir 2021, 37, 12409–12418.

    Article  CAS  PubMed  Google Scholar 

  14. Ren, Y. Y.; Wu, K.; Coker, D. F.; Quirke, N. Thermal transport in model copper-polyethylene interfaces. J. Chem. Phys. 2020, 151, 174708.

    Article  Google Scholar 

  15. Yuan, J.; Elektorowicz, M.; Chen, Z.; Segun, G. A.; Vakili, M.; Zhong, L. X.; Wang, B. Z.; Zhu, J. S.; Wu, Y. W. Simulation and computer modeling of asphaltene in different solvents on oil-water interfaces using a molecular dynamic methodology. J. Mol. Graph. 2019, 93, 107450.

    Article  CAS  Google Scholar 

  16. Lin, H. Y.; Chang, C. H.; Young, W. B. Experimental and analytical study on filling of nano structures in micro injection molding. Int. Commun. Heat Mass Transf. 2010, 37, 1477–1486.

    Article  CAS  Google Scholar 

  17. Zhai, Z. Y.; He, Q. Z.; Fu, L.; Liu, N. F.; Liu, X. H.; Jiang, B. Y.; Zhou, M. Y. Effect of plasma treatment parameters on the interfacial joining strength of overmolded hybrid fiber reinforced thermoplastic composites. J. Appl. Polym. Sci. 2022, 139, e52166.

    Article  Google Scholar 

  18. Zhai, Z. Y.; He, Q. Z.; Fu, L.; Liu, N. F.; Liu, X. H.; Jiang, B. Y.; Zhou, M. Y. Effects of molding conditions on injection molded direct joining using a metal with nano-structured surface. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2016, 45, 203–20.

    Google Scholar 

  19. Zhang, M. L.; **n, Y. Micro-mechanism research into molecular chains orientation synergistically induced by carbon nanotube and shear flow in injection molding. Appl. Sci. Basel 2020, 10, 723.

    Article  CAS  Google Scholar 

  20. Zhou, M. Y; Jiang, B. Y.; Weng, C. Molecular dynamics study on polymer filling into nano-cavity by injection molding. Comput. Mater. Sci. 2016, 120, 36–42.

    Article  CAS  Google Scholar 

  21. Jiang, B. Y.; Zhang, M. H.; Fu, L.; Zhou, M. Y.; Zhai, Z. Y. Molecular dynamics simulation on the interfacial behavior of over-molded hybrid fiber reinforced thermoplastic composites. Polymers. 2020, 12, 1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, D. L.; Zhou, F.; Zhou, H. Z. The polymer-metal interactive behavior in polyphenylene sulfide/aluminium hetero interface in nano injection molding. Compos. Interfaces 2020, 27, 277–288.

    Article  CAS  Google Scholar 

  23. Liu, D. L.; Zhou, F.; Li, H. C.; **n, Y.; Yi, Z. W. Study on the interfacial interactions and adhesion behaviors of various polymer-metal interfaces in nano molding. Polym. Eng. Sci. 2021, 61, 95–106.

    Article  CAS  Google Scholar 

  24. Li, H. C.; Cai, Z. M.; Zhou, F.; Liu, D. L. MD simulation analysis of the anchoring behavior of injection-molded nanopits on polyphenylene sulfide/Cu interface. Compos. Interfaces 2022, 29, 431–446.

    Article  CAS  Google Scholar 

  25. Feng, B.; Fan, L. W.; Zeng, Y.; Ding, J. Y.; Shao, X. F. Atomistic insights into the effects of hydrogen bonds on the melting process and heat conduction of erythritol as a promising latent heat storage material. Int. J. Therm. Sci. 2019, 146, 106103.

    Article  CAS  Google Scholar 

  26. Dad, M. U.; Perveen, A.; Liang, H. T.; Yang, Y. Interface migration in aluminum bicrystals via premelting. Surf. Interfaces. 2021, 26, 101344.

    Article  CAS  Google Scholar 

  27. Veske, M.; Parviainen, S.; Zadin, V.; Aabloo, A.; Djurabekova, F. Electrodynamics-molecular dynamics simulations of the stability of Cu nanotips under high electric field. J. Phys. D-Appl. Phys. 2016, 49, 215301.

    Article  Google Scholar 

  28. Imjjad, A.; Abbiche, K.; Mellaoui, M. D.; Jmiai, A.; El, B. N.; Taleb, A. A.; Bazzi, I.; El, I. S.; Hilali, M.; Ben, S. R.; Hochlaf, M. Corrosion inhibition of mild steel by aminobenzoic acid isomers in hydrochloric acid solution: efficiency and adsorption mechanisms. Appl. Surf. Sci. 2022, 576, 151780.

    Article  CAS  Google Scholar 

  29. Lyu, Y.; Huang, Q. Y.; Liu, L. Q.; Zhang, D. X.; Xue, H. Y.; Zhang, F. Q.; Zhang, H. W.; Li, R. B.; Wang, Q. C. Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation. Energy 2022, 250, 123811.

    Article  Google Scholar 

  30. BIOVIA [Internet]. French Republic (FRA): dassault Systèmes; c2002-2022 [cited 2022 May 5]. Available from: www.accelrys.com.

  31. Lippert, R. A; Predescu, C.; Ierardi, D. J.; Mackenzie, K. M.; Eastwood, M. P.; Dror, R. O.; Shaw, D. E. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. J. Chem. Phys. 2013, 139, 164106.

    Article  PubMed  Google Scholar 

  32. Shit, S. P.; Ghosh, N. K.; Pal, S. Thermal conductivity of water base nanofluids containing loaded graphene nanosheets using molecular dynamics simulation. AIP Conf. Proc. 2020, 2220, 020004.

    Article  CAS  Google Scholar 

  33. Karasawa, N.; Goddard, W. A. Force fields, structures, and properties of poly(vinylidene fluoride) crystals. Macromolecules 1992, 25, 7268.

    Article  CAS  Google Scholar 

  34. Sun, H. COMPASS:an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. Chem. B 1998, 102, 7338–7364.

    Article  CAS  Google Scholar 

  35. Sun, H.; Ren, P.; Fried, J. The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246.

    Article  CAS  Google Scholar 

  36. P. G. de Geenes, Soft interfaces: the 1994 Dirac memorial lecture, Cambridge University Press, New York, 1997, p. 17–41

    Google Scholar 

  37. Djafarirouhani, B.; Dobrzynski, L.; Wallis, R. F. Elastic continuum theory of interface-atom mean-square displacements. Phys. Rev. B 1977, 16, 741–749.

    Article  CAS  Google Scholar 

  38. Jia, D.; Muthukumar, M. Electrostatically driven topological freezing of polymer diffusion at intermediate confinements. Phys. Rev. Lett. 2021, 126, 057802.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, C.; Zhou, Y. L.; Wu, F.; Chen, Y. C. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Phys. Sin. 2020, 69, 168201.

    Article  Google Scholar 

  40. Cherstvy, A. G.; Metzler, R. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Phys. Rev. E 2014, 90, 012134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52165046). We thank the anonymous reviewers, whose comments have helped improve the presentation of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Lei Liu.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HC., Liu, DL., Luo, X. et al. Enhanced Adhesion Properties of Polymer-Metal Interfaces via Nano-injection Molding: A Study on Molecular Kinematic Mechanisms. Chin J Polym Sci 41, 981–993 (2023). https://doi.org/10.1007/s10118-023-2906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2906-6

Keywords

Navigation