Log in

Polyarylene Ether Nitrile and Titanium Dioxide Hybrids as Thermal Resistant Dielectrics

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

With the expanding application of capacitors, thermal resistant dielectric materials are in high demand due to the increasing harsh environments where the capacitors are needed and the heat generated by the capacitors. Herein, we present polyarylene ether nitrile and titanium dioxide hybrids which can be used as thermal resistant dielectrics for these capacitors. Phthalonitrile modified titanium dioxide (TiO2-CN) and phthalonitrile end-capped polyarylene ether nitrile (PEN-Ph) are firstly prepared. After being cast into TiO2-CN/PEN nanocomposite films, these composites self-crosslink upon heating at 320 °C for 4 h, forming the polyarylene ether nitrile and titanium dioxide hybrids (TiO2-PEN). Improved dielectric constants which are stable from room temperature to 200 °C of these hybrids are observed, indicating the potential application of the hybrids as thermal resistant dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, Z. H.; Song, Z.; Hao, H.; Yu, Z. Y.; Cao, M. H.; Zhang, S. J.; Lanagan, M. T.; Liu, H. X. Homogeneous/inhomogeneous-structured dielectric and their energy-storage performances. Adv. Mater. 2017, 29, 1601727.

    Article  Google Scholar 

  2. Zhan, J. Y.; Tian, G. F.; Wu, Z. P.; Qi, S. L.; Wu, D. Z. Preparation of polyimide/BaTiO3/Ag nanocomposite films via in situ technique and study of their dielectric behavior. Chinese J. Polym. Sci. 2014, 32, 424–431.

    Article  CAS  Google Scholar 

  3. Yang, S. Y.; Bryant, A.; Mawby, P.; **ang, D. W.; Ran, L.; Tavner, P. An industry-based survey of reliability in power electronic converters. IEEE T. Ind. Appl. 2011, 47, 1441–1451.

    Article  Google Scholar 

  4. Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energ. Environ. Sci. 2014, 7, 867–884.

    Article  CAS  Google Scholar 

  5. Prateek; Thakur, V. K.; Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317.

    Article  CAS  Google Scholar 

  6. Li, J. L.; Li, F.; Xu, Z.; Zhang, S. J. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 2018, 30, 1802155.

    Article  Google Scholar 

  7. Dang, Z. M.; Yuan, J. K.; Zha, J. W.; Zhou, T.; Li, S. T.; Hu, G. H. Fundamentals, processes and applications of high-permittivity polymer matrix composites. Prog. Mater. Sci. 2012, 57, 660–723.

    Article  CAS  Google Scholar 

  8. Zhu, L. Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 2014, 5, 3677–3687.

    Article  CAS  Google Scholar 

  9. Wang, Y.; Zhou, X.; Chen, Q.; Chu, B. J.; Zhang, Q. M. Recent development of high energy density polymers for dielectric capacitors. IEEET. Dielect. El. In. 2010, 17, 1036–1042.

    Article  CAS  Google Scholar 

  10. Hong, J. I.; Winberg, P.; Schadler, L. S.; Siegel, R. W. Dielectric properties of zinc oxide/low density polyethylene nanocomposite. Mater. Lett. 2005, 59, 473–476.

    Article  CAS  Google Scholar 

  11. Wang, J.; Li, Z.; Yan, Y.; Wang, X.; **e, Y. C.; Zhang, Z. C. Improving ferro- and piezo- electric properties of hydrogenized poly(vinylidene fluoride-trifluoroethylene) films by annealing at elevated temperatures. Chinese J. Polym. Sci. 2016, 34, 649–658.

    Article  CAS  Google Scholar 

  12. He, L.; Tjong, S. C. High dielectric permittivity and low loss tangent of polystyrene incorporated with hydrophobic core-shell copper nanowires. RSCAdv. 2015, 5, 38452.

    CAS  Google Scholar 

  13. Mackey, M.; Schuele, D. E.; Zhu, L.; Flandin, L.; Wolak, M. A.; Shirk, J. S.; Hiltner, A.; Baer, E. Reduction of dielectric hysteresis in multilayered films via nanoconfinement. Macromolecules 2012, 45, 1954–1962.

    Article  CAS  Google Scholar 

  14. Wang, L. L.; Liu, X. C.; Liu, C. Y.; Zhou, X. F.; Liu, C. C.; Cheng, M. Z.; Wei, R. B.; Liu, X. B. Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties. Chem. Eng. J. 2020, 384, 123231.

    Article  CAS  Google Scholar 

  15. Wang, Q; Zhu, L. Polymer nanocomposites for electrical energy storage. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1421–2429.

    Article  CAS  Google Scholar 

  16. Hikosaka, S.; Ohki, Y. Dielectric properties of poly(phenylene sulfide) as a function of temperature and frequency. IEEJ T. Electr. Electr. 2020, 7, 116–120.

    Article  Google Scholar 

  17. Dang, Z. M.; Zhou, T.; Yao, S. H.; Yuan, J. K.; Zha, J. W.; Song, S. T.; Li, J. Y.; Chen, Q.; Yang, W. T.; Bai, J. B. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 2009, 21, 2077–2082.

    Article  CAS  Google Scholar 

  18. Liu, Y. W.; Tang, L. S.; Qu, L. J.; Liu, S. W.; Chi, Z. G.; Zhang, Y.; Xu, J. R. Synthesis and properties of high performance functional polyimides containing rigid nonplanar conjugated fluorene moieties. Chinese J. Polym. Sci. 2019, 37, 416–427.

    Article  CAS  Google Scholar 

  19. You, Y.; Zhan, C. H.; Tu, L.; Wang, Y. J.; Hu, W. B.; Wei, R. B.; Liu, X. B. Polyarylene ether nitrile-based high-k composites for dielectric applications. Int. J. Polym. Sci. 2018, 5161908.

    Google Scholar 

  20. Tu, L.; **ao, Q.; Wei, R. B.; Liu, X. B. Fabrication and enhanced thermal conductivity of boron and polyarylene ether nitrile hybrids. Polymers 2019, 11, 1340.

    Article  Google Scholar 

  21. Li, Q.; Chen, L.; Gadinski, M. G.; Zhang, S. H.; Zhang, G. Z.; Li, H. U.; Lagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N.; Wang, Q. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579.

    Article  CAS  Google Scholar 

  22. Zia, T.; Khan, A. N.; Hussain, M.; Ibrar, H.; Iftikhar, H. G. Enhancing dielectric and mechanical behaviors of hybrid polymer nanocomposites based on polystyrene, polyaniline and carbon nanotubes coated with polyaniline. Chinese J. Polym. Sci. 2016, 34, 1500–1509.

    Article  CAS  Google Scholar 

  23. You, Y.; Wang, Y. J.; Tu, L.; Tong, L. F.; Wei, R. B.; Liu, X. B. Interface modulation of core-shell structured BaTiO3@polyaniline for novel dielectric materials from its nanocomposite with polyarylene ether nitrile. Polymers 2018, 10, 1378.

    Article  Google Scholar 

  24. You, Y.; Han, W. H.; Tu, L.; Wang, Y. J.; Wei, R. B.; Liu, X. B. Doublelayer core/shell-structured nanoparticles in polyarylene ether nitrile-based nanocomposites as flexible dielectric materials. RSC Adv. 2017, 7, 29306–29311.

    Article  CAS  Google Scholar 

  25. Liu, S. L.; Liu, C. C.; Liu, C. Y.; Tu, L.; You, Y.; Wei, R. B.; Liu, X. B. Polyarylene ether nitrile and barium titanate nanocomposite plasticized by carboxylated zinc phthalocyanine buffer. Polymers 2019, 11, 418.

    Article  Google Scholar 

  26. Yang, R. Q.; **ao, Q. You, Y.; Wei, R. B.; Liu, X. B. In situ catalyzed and reinforced high-temperature flexible crosslinked ZnO nano-whisker/polyarylene ether nitriles composite dielectric films. Polym. Compos. 2018, 39, 2801–2811.

    Article  CAS  Google Scholar 

  27. Wei, R. B.; Wang, J. L.; Zhang, H. X.; Han, W. H.; Liu, X. B. Crosslinked polyarylene ether nitrile interpenetrating with zinc ion bridged graphene sheet and carbon nanotube network. Polymers 2017, 9, 342.

    Article  Google Scholar 

  28. Wang, Z. C.; Wei, R. B.; Liu, X. B. Preparation and dielectric properties of copper phthalocyanine/graphene oxide nanohybrids via in situ polymerization. J. Mater. Sci. 2016, 51, 4682–4690.

    Article  CAS  Google Scholar 

  29. Wei, R. B.; Li, K.; Ma, Y. J.; Zhang, H. X.; Liu, X. B. Improvmg dielectric properties of polyarylene ether nitrile with conducting polyaniline. J. Mater. Sci. Mater. El. 2017, 43, 12109–12119.

    Google Scholar 

  30. Yang, R. Q.; Wei, R. B.; Li, K.; Tong, L. F.; Jia, K.; Liu, X. B. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability. Sci. Rep. 2016, 6, 36434.

    Article  CAS  Google Scholar 

  31. Wei, R. B.; Tu, L.; You, Y.; Zhan, C. H.; Wang, Y. J.; Liu, X. B. Fabrication of crosslinked single-component polyarylene ether nitrile composite with enhanced dielectric properties. Polymer 2019, 161, 162–538.

    Article  CAS  Google Scholar 

  32. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Aaggmuir 2001, 17, 2664–2669.

    CAS  Google Scholar 

  33. Giesbers, M.; Marcelis, A. T. M.; Zuilhof, H. Simulation of XPS C1s spectra of organic monolayers by quantum chemical methods. Langmuir 2013, 29, 4782–4788.

    Article  CAS  Google Scholar 

  34. You, Y.; Liu, S. L.; Tu, L.; Wang, Y. J.; Zhan, C. H.; Du, X. Y.; Wei, R. B.; Liu, X. B. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors. Macromolecules 2019, 52, 5850–5859.

    Article  CAS  Google Scholar 

  35. Yu, E. J.; Zhang, Q. L.; Xu, N. X.; Yang, H. F-TiO2/P(VDF-HFP) hybrid films with enhanced dielectric permittivity and low dielectric loss. RSC Adv. 2017, 7, 3949–3957.

    Article  CAS  Google Scholar 

  36. Yang, G. Y.; Tong, L. F.; Liu, X. B. Design and properties of fluoroelastomer composites via incorporation of mwcnts with varied modification. Chinese J. Polym. Sci. 2020, DOI: https://doi.org/10.1007/s10118-020-2405-y.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51773028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren-Bo Wei or **ao-Bo Liu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, RB., Zhan, CH., Yang, Y. et al. Polyarylene Ether Nitrile and Titanium Dioxide Hybrids as Thermal Resistant Dielectrics. Chin J Polym Sci 39, 211–218 (2021). https://doi.org/10.1007/s10118-020-2481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2481-z

Keywords

Navigation