Log in

Poly(arylene ether nitrile) Dielectric Film Modified by Bi2S3/rGO-CN Fillers for High Temperature Resistant Electronics Fields

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

High-quality film capacitors are widely used in many fields such as new energy vehicles, electronic communications, etc., due to their advantages in wide frequency response and low dielectric loss. The dielectric film is a crucial part of the film capacitor, and its properties have an important impact on the performance and use conditions of the film capacitor. In this work, a novel high-temperature-resistant dielectric film was prepared. Firstly, the Bi2S3/rGO-CN fillers were prepared by hydrothermal method combined with cyanation treatment, and then added to the poly(arylene ether nitrile) (PEN) matrix to prepare the dielectric film materials (PEN/Bi2S3/rGO-CN). After high temperature treatment, the fillers Bi2S3/rGO-CN reacted with the PEN matrix, and the composites materials transformed into a thermosetting hybrid film (PEN-Bi2S3/rGO) with gel content of 97.88%. The prepared hybrid dielectric films did not decompose significantly before 400 °C, and showed a glass transition temperature (Tg) of up to 252.4 °C, which could increase the effective use temperature of the materials. Compared with the composite films without heat treatment, they exhibit better mechanical properties, with further improvement in tensile strength and elastic modulus, and a decrease in elongation at break. The dielectric constant of the hybrid films can be up to 6.8 while the dielectric loss is only about 0.02 at 1 kHz. Moreover, the hybrid films showed excellent dielectric stability during temperature changes, and remain relatively stable before 250 °C, which is suitable as a high-temperature-resistant high-dielectric material and is more advantageous for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, X.; Han, P.; Wen, H.; Sun, Y.; Zhang, X.; Yang, H.; Lin, B. Synthesis and properties of triphenodioxazine-based conjugated polymers for polymer solar cells. Eur. J. Org. Chem. 2017, 2017, 3689–3698.

    Article  CAS  Google Scholar 

  2. Lai, C.; Sun, Y.; Zhang, X.; Yang, H.; Kang, W.; Lin, B. Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors. Electrochim. Acta 2018, 271, 379–387.

    Article  CAS  Google Scholar 

  3. Gao, L.; He, J.; Hu, J.; Li, Y. Large enhancement in polarization response and energy storage properties of poly(vinylidene fluoride) by improving the interface effect in nanocomposites. J. Phys. Chem. C 2014, 118, 831–838.

    Article  CAS  Google Scholar 

  4. Yao, L.; Pan, Z.; Zhai, J.; Chen, H. H. D. Novel design of highly 110-oriented barium titanate nanorod array and its application in nanocomposite capacitors. Nanoscale 2017, 9, 4255–4264.

    Article  CAS  PubMed  Google Scholar 

  5. Samant, S. P.; Grabowski, C. A.; Kisslinger, K.; Yager, K. G.; Yuan, G.; Satija, S. K.; Durstock, M. F.; Raghavan, D.; Karim, A. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors. ACS Appl. Mater. Interfaces 2016, 8, 7966–7976.

    Article  CAS  PubMed  Google Scholar 

  6. Bi, M.; Hao, Y.; Zhang, J.; Lei, M.; Bi, K. Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites. Nanoscale 2017, 9, 16386–16395.

    Article  CAS  PubMed  Google Scholar 

  7. Wu, W.; Liu, T.; Zhang, D.; Sun, Q.; Cao, K.; Zha, J.; Lu, Y.; Wang, B.; Cao, X.; Feng, Y.; Roy, V. A. L.; Li, R. K. Y. Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes. Compos. Part A-Appl. Sci. Manuf. 2019, (127), 105650.

  8. Chen, G.; Zhang, X. H.; Qiao, J. L. Effect of nano-fillers on conductivity of polyethylene/low melting point metal alloy composites. Chinese J. Polym. Sci. 2015, 33, 371–375.

    Article  CAS  Google Scholar 

  9. Cui, C. H.; Yan, D. X.; Pang, H.; Jia, L. C.; Bao, Y.; Jiang, X.; Li, Z. M. Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chinese J. Polym. Sci. 2016, 34, 1490–1499.

    Article  CAS  Google Scholar 

  10. Wei, Z. B.; Zhao, Y.; Wang, C.; Kuga, S.; Huang, Y.; Wu, M. Antistatic PVC-graphene composite through plasticizer-mediated exfoliation of graphite. Chinese J. Polym. Sci. 2018, 36, 1361–1367.

    Article  CAS  Google Scholar 

  11. Zhang, Q. Y.; Li, H. S.; Guo, B. H.; Guo, Z. X.; Yu, J. Facile preparation of electromagnetic interference shielding materials enabled by constructing interconnected network of multi-walled carbon nanotubes in a miscible polymeric blend. Chinese J. Polym. Sci. 2020, 38, 593–598.

    Article  CAS  Google Scholar 

  12. Guo, Q.; Xue, Q.; Sun, J.; Dong, M.; **a, F.; Zhang, Z. Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids. Nanoscale 2015, 7, 3660–3667.

    Article  CAS  PubMed  Google Scholar 

  13. Lei, X. T.; Tong, L. F.; Xu, M. Z.; You, Y.; Liu, X. B. PEN/BADCy interlayer dielectric films with tunable microstructures via an assist of temperature for enhanced frequency stability. Chinese J. Polym. Sci. 2020, 38, 1258–1266.

    Article  CAS  Google Scholar 

  14. Wei, R. B.; Zhan, C. H.; Yang, Y.; He, P. L.; Liu, X. B. Polyarylene ether nitrile and titanium dioxide hybrids as thermal resistant dielectrics. Chinese J. Polym. Sci. 2021, 39, 211–218.

    Article  CAS  Google Scholar 

  15. Lei, Y.; Zhao, R.; Yang, X.; Liu, X. Mechanical and thermal properties of graphite nanoplatelets reinforced polyarylene ether nitriles/bisphthalonitrile IPN system. J. Appl. Polym. Sci. 2013, 127, 3595–3600.

    Article  CAS  Google Scholar 

  16. Liu, M.; Xu, M.; Tong, L.; Huang, X.; Yang, X.; Liu, X. Nitrile functionalized Al2O3 reinforced polyarylene ether nitriles terminated with phthalonitrile composites. J. Polym. Res. 2014, 21.

  17. Liu, S.; Tu, L.; Liu, C.; Tong, L.; Bai, Z.; Lin, G.; Jia, K.; Liu, X. Interfacial crosslinking enabled super-engineering polymer-based composites with ultra-stable dielectric properties beyond 350 degrees C. J. Alloys Compd. 2022, 891, 161952.

    Article  CAS  Google Scholar 

  18. Meng, F.; Zhong, J.; Chen, Y.; Liu, X. The influence of cross-linking reaction on the mechanical and thermal properties of polyarylene ether nitrile. J. Appl. Polym. Sci. 2011, 120, 1822–1828.

    Article  CAS  Google Scholar 

  19. Tong, L.; Jia, K.; Liu, X. Novel phthalonitrile-terminated polyarylene ether nitrile with high glass transition temperature and enhanced thermal stability. Mater. Lett. 2014, 128, 267–270.

    Article  CAS  Google Scholar 

  20. Tong, L.; Pu, Z.; Huang, X.; Chen, Z.; Yang, X.; Liu, X. Crosslinking behavior of polyarylene ether nitrile terminated with phthalonitrile (PEN-t-Ph)/1,3,5-tri-(3,4-dicyanophenoxy) benzene (TPh) system and its enhanced thermal stability. J. Appl. Polym. Sci. 2013, 130, 1363–1368.

    Article  CAS  Google Scholar 

  21. You, Y.; Liu, S.; Tu, L.; Wang, Y.; Zhan, C.; Du, X.; Wei, R.; Liu, X. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors. Macromolecules 2019, 52, 5850–5859.

    Article  CAS  Google Scholar 

  22. Lu, J.; Han, Q.; Yang, X.; Lu, L.; Wang, X. Preparation of Bi2S3 nanorods via a hydrothennal approach. Mater. Lett. 2007, 61, 3425–3428.

    Article  CAS  Google Scholar 

  23. Chen, K.; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J. Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 2012, 84, 4057–4062.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    Article  CAS  PubMed  Google Scholar 

  25. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 2010, 4, 611–622.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Kai, Y.; Tong, L.; You, Y.; Huang, Y.; Liu, X. The frequency independent functionalized MoS2 nanosheet/poly(arylene ether nitrile) composites with improved dielectric and thermal properties via mussel inspired surface chemistry. Appl. Surf. Sci. 2019, 481, 1239–1248.

    Article  CAS  Google Scholar 

  27. Tang, Z.; **a, J.; Yin, H.; Fu, G.; Ai, X.; Tang, H.; Yang, C.; Qu, L.; Li, Y. High-temperature-resistant barium strontium titanate@Ag/poly(arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength. Adv. Compos. Hybrid Mater. 2021, 5, 822–833.

    Google Scholar 

  28. Prateek; Thakur, V. K.; Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317.

    Article  CAS  PubMed  Google Scholar 

  29. Zhan, Y.; Yang, X.; Guo, H.; Yang, J.; Meng, F.; Liu, X. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability. J. Mater. Chem. 2012, 22, 5602–5608.

    Article  CAS  Google Scholar 

  30. Wei, R.; **ao, Q.; Zhan, C.; You, Y.; Zhou, X.; Liu, X. Polyarylene ether nitrile and boron nitride composites: coating with sulfonated polyarylene ether nitrile. e-Polymers 2019, 19, 70–78.

    Article  CAS  Google Scholar 

  31. Tang, H.; Lin, Y.; Sodano, H. A. Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv. Energy Mater. 2012, 2, 469–476.

    Article  CAS  Google Scholar 

  32. Jiang, A. Q.; Wang, C.; **, K. J.; Liu, X. B.; Scott, J. F.; Hwang, C. S.; Tang, T. A.; Bin Lu, H.; Yang, G. Z. A Resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 2011, 23, 1277–1278.

    Article  CAS  PubMed  Google Scholar 

  33. Chon, U.; Kim, K. B.; Jang, H. M.; Yi, G. C. Fatigue-free samarium-modified bismuth titanate (Bi4-xSmxTi3O12) film capacitors having large spontaneous polarizations. Appl. Phys. Lett. 2001, 79, 3137–3139.

    Article  CAS  Google Scholar 

  34. Kim, S. K.; Choi, G.-J.; Lee, S. Y.; Seo, M.; Lee, S. W.; Han, J. H.; Ahn, H. S.; Han, S.; Hwang, C. S. Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors. Adv. Mater. 2008, 20, 1429–1430.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52073039, 51903029, 21805027, 51803020 and 51773028), International Science and Technology Cooperation Project (No. 52011530027), Major Special Projects of Sichuan Province (Nos. 2020YFG0270, 2020ZDZX0020, 2019ZDZX0027 and 2019ZDZX0016), the Fundamental Research Funds for the Central Universities (No. ZYGX2019J026), Sichuan Science and Technology Program (Nos. 2019YJ0197, 2019YFG0056 and 2020YFG0100), International Science and Technology Cooperation Project from Chengdu municipal government (No. 2019-GH02-00037-HZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Fen Tong or **ao-Bo Liu.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, LF., He, L., Zhan, CH. et al. Poly(arylene ether nitrile) Dielectric Film Modified by Bi2S3/rGO-CN Fillers for High Temperature Resistant Electronics Fields. Chin J Polym Sci 40, 1441–1450 (2022). https://doi.org/10.1007/s10118-022-2810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2810-5

Keywords

Navigation