Log in

Evaluation of the seismic site characterization of Kovancilar (Elazig), Turkey

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The effect of seismic waves on structures during an earthquake varies depending on local ground conditions. This study is dedicated to determining the seismic site characterization of Kovancılar district in the city of Elazığ, Turkey, whose location is close (5 km) to the East Anatolian Fault Zone (EAFZ), one of the most active fault zones all around globe. For this purpose, 1-D equivalent linear soil behavior analyzes were performed using 28 geotechnical drilling and 20 multi-channel surface wave (MASW) test data in the study area. The results of these analyses indicated the peak ground acceleration (PGA) values in Kovancılar ranged between 0.41 and 0.68 g, while high PGA values were observed in the region of alluvial soils in the south of the district. The acceleration spectra obtained from the analyses on three different locations were compared to the Turkish Building Seismic Regulation 2018 (TBSR 2018) and Eurocode 8 (EC-8 2004) design spectra. For some periods, the acceleration values in the site-specific spectra were observed to exceed the related values in the TBSR 2018 ZC and ZD design spectra. In addition, ground amplification, PGA, and spectral acceleration (Sa) maps with 0.2–1 s periods were created for the study area. With the evaluation of the obtained parameters, the north of the region was established to be more suitable for multi-story buildings, while the northeast, east, and southeast regions being more suitable for low-rise buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Abrahamson AN, Shedlock KM (1997) Overview. Seismol Res Lett 68(1):9–23. https://doi.org/10.1785/gssrl.68.1.9

    Article  Google Scholar 

  • Abrahamson NA, Silva WJ, Kamai R (2013) Update of the AS08 ground-motion prediction equations based on the nga-west2 data set. Pacific Earthquake Engineering Research Center, University of California PEER Report No: 2013/04

  • Adampira M, Alielahi H, Panji M, Koohsari H (2015) Comparison of linear and nonlinear methods in seismic analysis of liquefiable site response due to near-fault incident waves: a case study equivalent. Arab J Geosci 8(5):3103–3118. https://doi.org/10.1007/s12517-014-1399-6

    Article  Google Scholar 

  • AFAD (2023) Disaster and Emergency Management Presidency Earthquake Department. Ankara, Turkey

    Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology, W.H, vol 1. Freeman and Co., San Francisco, California, p 137 ISBN 0-7167-1058-7.

    Google Scholar 

  • Akın MK, Topal T, Kramer SL (2013) A newly developed seismic microzonation model of Erbaa (Tokat, Turkey) located on seismically active eastern segment of the North Anatolian Fault Zone (NAFZ). Nat Hazards 65(3):1411–1442. https://doi.org/10.1007/s11069-012-0420-1

    Article  Google Scholar 

  • Akkar S, Bommer JJ (2007) Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East. Bull Seismol Soc Am 97(2):511–530. https://doi.org/10.1785/0120060141

    Article  Google Scholar 

  • Akkar S, Gülkan P, (2002) Tasarım Spektrumlarının Performansa Dayalı Deprem Mühendisliği (PDDM) ve Yakın Mesafe Depremler Yönünden İncelenmesi. ECAS, (2002) Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu. ODTU, Ankara, Turkey

  • Akkaya I, Özvan A (2019) Site characterization in the Van settlement (Eastern Turkey) using surface waves and HVSR microtremor methods. J Appl Geophys 160:157–170. https://doi.org/10.1016/j.jappgeo.2018.11.009

    Article  Google Scholar 

  • Akkoca DB, Karatas O (2019) The geochemical composition of The Palu Formation from The Palu-Uluova Basin, Elaziğ, Eastern Anatolia (Turkey): implication of source area, weathering, and tectonic setting. J Afr Earth Sci 151:472–489. https://doi.org/10.1016/j.jafrearsci.2019.01.007

    Article  Google Scholar 

  • Aksoy E, İnceöz M, Koçyiğit A (2007) Lake Hazar Basin: a negative flower structure on The East Anatolian Fault System (EAFS), SE Turkey. Turk J Earth Sci 16:319–338. https://journals.tubitak.gov.tr/earth/vol16/iss3/3

    Google Scholar 

  • Aktuğ B, Özener H, Doğru A, Sabuncu A, Turgut B, Halıcıoğlu K, Yılmaz O (2016) Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J Geodyn 94-95:1–12. https://doi.org/10.1016/j.jog.2016.01.001

    Article  Google Scholar 

  • Allen CR (1969) Active faulting in northern turkey. Contribution No: 1577, Division of Geological Sciences, California Instutite Technology, 32

  • Ambraseys NN, Bommer JJ (1991) The attenuation of ground accelerations in Europe. Earthq Eng Struct Dyn 20(12):1179–1202. https://doi.org/10.1002/eqe.4290201207

    Article  Google Scholar 

  • Anbazhagan P, Sheikh MN, Parihar A (2013) Influence of rock depth on seismic site classification for shallow bedrock regions. Nat Hazard Rev 14(2):108–121. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000088

    Article  Google Scholar 

  • Anderson JG, Bodin P, Brune JN, Prince J, Singh SK, Quaas R, Onate M (1986) Strong ground motion from the michoacan, Mexico, earthquake. Science 233:1043–1049. https://doi.org/10.1126/science.233.4768.1043

    Article  Google Scholar 

  • Ansal A, Biro Y, Erken A, Gulerce U (2004) Seismic microzonation: a case study. In: Ansal A (ed) Recent advances in earth quake geotechnical engineering and microzonation. Kluwer Academic Publishers, The Netherlands, pp 253–266. https://doi.org/10.1007/1-4020-2528-9_9

    Chapter  Google Scholar 

  • Ansal A, Özaydın K, Erdik M, Yıldırım H, Kılıç H, Adatepe Ş, Özener PT, Tonaroğlu M, Şeşetyan K, Demircioğlu M (2005) Seismic Microzonation for urban planning and vulnerability assessment, Proceedings of the Int. Symposium of Earthquake Engineering (ISEE2005), Awaji Island, Kobe, Japonya

  • Ansal A, Tönük G, Kurtuluş A (2011) Zemin Büyütme Analizleri Ve Sahaya Özel Tasarım Depremi Özelliklerinin Belirlenmesi. 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, ODTU, Ankara, Turkey

  • Arpat E (1977) The Karakaya dam will be tested by very big earthquakes. Yeryuvarı ve İnsan 2(1):59–62

    Google Scholar 

  • Arpat E, Şaroğlu F (1972) Doğu Anadolu Fayı ile İlgili Bazı Gözlemler ve Düşünceler. MTA Enst. Dergisi 78: 44-50 Ankara

  • Bayrak E, Yılmaz S, Softa M, Turker T, Bayrak Y (2015) Earthquake hazard analysis for East Anatolian Fault Zone, Turkey. Nat Hazards 76:1063–1077. https://doi.org/10.1007/s11069-014-1541-5

    Article  Google Scholar 

  • BDTIM (2015) Regional Earthquake-Tsunami Monitoring Center. Boğaziçi University Kandilli Observatory and Earthquake Research Institute

    Google Scholar 

  • Bolisetti C, Whittaker AS, Mason HB, Almufti I, Willford M (2014) Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nucl Eng Des 275:107–121. https://doi.org/10.1016/j.nucengdes.2014.04.033

    Article  Google Scholar 

  • Boore DM, Stewart JP, Seyhan E, Atkinson GM (2013) NGA-West2 equations for predicting response spectral accelerations for shallow crustal earthquakes. Pacific Earthquake Engineering Research Center, University of California PEER Report No: 2013/05

  • Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodologyand justification). Earthq Spectra 10(4):617–653. https://doi.org/10.1193/1.1585791

    Article  Google Scholar 

  • Bozkurt E (2001) Neotectonics of Turkey–a synthesis. Geodinamica Acta 14:3–30. https://doi.org/10.1080/09853111.2001.11432432

    Article  Google Scholar 

  • Cabalar AF, Karabas B, Mahmutluoglu B, Yıldız Ö (2021) An IDW-based GIS application for assesment of geptechnical characterization in Erzincan Turkey. Arab J Geosci 14:2129. https://doi.org/10.1007/s12517-021-08481-6

    Article  Google Scholar 

  • Campbell KW (1989) The dependence of peak horizontal acceleration on magnitude, distance, and site effects for small-magnitude earthquakes in California and eastern North America. Bull Seismol Soc Am 79(5):1311–1346. https://www.researchgate.net/publication/279462659

    Google Scholar 

  • Campbell KW, Bozorgnia Y (2013) NGA-West2 campbell-bozorgnia ground motion model for the horizontal components of pga, pgv, and 5%-damped elastic pseudo-acceleration response spectra for periods ranging from 0.01 to 10 sec. pacific earthquake. Engineering Research Center, University of California PEER Report No: 2013/06

  • Cavallaro A, Capilleri P, Grasso S (2018b) Site characterization by in situ and laboratory tests for liquefaction potential evaluation during Emilia Romagna earthquake. Geosciences 8(7):1–15. https://doi.org/10.3390/geosciences8070242

    Article  Google Scholar 

  • Cavallaro A, Castelli F, Ferraro A, Grasso S, Lentini V (2018a) Site response analysis for the seismic improvement of a historical and monumental building: the case study of Augusta Hangar. Bull Eng Geol Environ 77(3):1217–1248. https://doi.org/10.1007/s10064-017-1170-9

    Article  Google Scholar 

  • Cavallaro A, Grasso S, Sammito MSV (2022) A seismic Microzonation study for some areas around the Mt. Etna Volcano on the East Coast of Sicily, Italy. In book: Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering, Bei**g, China, 15-17 July. 10.1007/978-3-031-11898-2_61

  • Celik H (2008) Doğu Anadolu Fay Sistemi’nde Sivrice Fay Zonunun Palu-Hazar Gölü (Elazığ) arasındaki bölümünde Atımla İlgili Yeni Arazi Bulgusu. Fırat Üniv Fen ve Müh Bil Dergisi 20(2):305–314

    Google Scholar 

  • Cetin H, Güneyli H, Mayer L (2003) Paleoseismology of the Palu–Lake Hazar segment of the East Anatolian Fault Zone, Turkey. Tectonophysics 374:163–197. https://doi.org/10.1016/j.tecto.2003.08.003

    Article  Google Scholar 

  • Chen S, Zhuang H, Quan D, Yuan J, Zhao K, Ruan B (2019) Shaking table test on the seismic response of large-scale subway station in a loess site: a case study. Soil Dyn Earthq Eng 123:173–184. https://doi.org/10.1016/j.soildyn.2019.04.023

    Article  Google Scholar 

  • Chen WF, Scawthorn C (2002) Earthquake Engineering Handbook. CRC Press

    Google Scholar 

  • Christenson GE (1994) Ground shaking in Utah (Public Information Series/Utah Geological Survey). Utah Geol Surv 29:1–4

    Google Scholar 

  • Ci̇velekler E, Okur VD, Afacan KB (2021) A study of the local site effects on the ground response for the city of Eskişehir, Turkey. Bull Eng Geol Env 80:5589–5607. https://doi.org/10.1007/s10064-021-02285-4

    Article  Google Scholar 

  • Colak S, Aksoy E, Koçyiğit A, İnceöz M (2012) The Palu-Uluova Strike-Slip Basin in the East Anatolian Fault System, Turkey: its transition from the Palaeotectonic to Neotectonic stage. Turk J Earth Sci 21:547–570. https://doi.org/10.3906/yer-1002-14

    Article  Google Scholar 

  • Darendeli M (2001) Development of a new family of normalized modulus reduction and material dam** curves. Ph.D. Dissertation,. University of Texas at Austin, Austin, USA

    Google Scholar 

  • Das S, Gupta ID, Gupta VK (2006) A probabilistic seismic hazard analysis of Northeast India. Earthq Spectra 22(1):1–27. https://doi.org/10.1193/1.2163914

    Article  Google Scholar 

  • Deniz A (2006) Estimation of earthquake insurance premium rates for Turkey. M.Sc. Thesis,. Dept. of Civil Engineering, METU

    Google Scholar 

  • Dikmen Ü (2009) Statistical correlations of shear wave velocity and penetration resistance for soil. J Geophys Eng 6:61–72. https://doi.org/10.1088/1742-2132/6/1/007

    Article  Google Scholar 

  • Douglas J, Aochi H (2008) A survey of techniques for predicting earthquake ground motions for engineering purposes. Surv Geophys 29(3):187–220. https://doi.org/10.1007/s10712-008-9046-y

    Article  Google Scholar 

  • EC-8 (2004) Eurocode 8: design of structures for earthquake resistance, Part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium

    Google Scholar 

  • Edinçliler A, Tuncay GS (2018) Nonlinear and equivalent linear site response analysis for the Bodrum region. Eurasian J Civ Eng Archit 2(2):59–68 https://dergipark.org.tr/en/pub/ejcar/issue/39134/432262

    Google Scholar 

  • Eskişar T, Kuruoğlu M, Altun S, Özyalın Ş, Recep Yılmaz HR (2014) Site response of deep alluvial deposits in the northern coast of İzmir Bay. Engineering Jeoloji 172:95–116. https://doi.org/10.1016/j.enggeo.2014.01.006

    Article  Google Scholar 

  • Finn WDL, Ventura CE (1995) Challenging issues in local microzonation. In: In: 5th International Conference on Seismic Zonation, Nice, France

  • Gautam D, Forte G, Rodrigues H (2016) Site efects and associated structural damage analysis in Kathmandu Valley. Nepal Earthq Struct 10(5):1013–1032. https://doi.org/10.12989/eas.2016.10.5.1013

    Article  Google Scholar 

  • Grasso S, Maugeri M (2009) The Seismic Microzonation of the City of Catania (Italy) for the Maximum Expected Scenario Earthquake of January 11, 1693. Soil Dyn Earthq Eng 29(6):953–962. https://doi.org/10.1016/j.soildyn.2008.11.006

    Article  Google Scholar 

  • Grasso S, Sammito MSV (2022) Uncertainties in performance based design methodologies for seismic Microzonation of ground motion and site effects: state of development and applications for Italy. In book: Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering, Bei**g, China, 15-17 July. 10.1007/978-3-031-11898-2_23

  • Gülkan P, Kocyigit A, Yucemen S, Doyuran V, Basoz N (1993) Earthquake zoning map of Turkey based on most recent data. Research Report, METU Earthquake Engineering Research Center, Ankara, Turkey

    Google Scholar 

  • Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy and acceleration. Bull Seismol Soc Am 323:163–191. https://doi.org/10.1785/BSSA0320030163

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188. https://doi.org/10.1785/BSSA0340040185

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann.Geofis. 9:1–15 https://resolver.caltech.edu/CaltechAUTHORS:20140130-105324849

    Google Scholar 

  • Hanumantharao C, Ramana GV (2008) Dynamic soil properties for microzonation of Delhi. India J Earth Syst Sci 117(2):719–730. https://doi.org/10.1007/s12040-008-0066-2

    Article  Google Scholar 

  • Hashash YMA, Musgrove MI, Harmon JA, Ilhan O, **ng G, Numanoglu O, Groholski DR, Phillips CA, Park D (2020) DEEPSOIL 7.0, User Manual. IL, Board of Trustees of University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  • Hempton MR (1982) The North Anatolian fault and complexities of continental escape. J Struct Geol 4:502–504. https://doi.org/10.1016/0191-8141(82)90041-4

    Article  Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strongmotion records including records from the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 71(6):2011–2038. https://doi.org/10.1785/BSSA0710062011

    Article  Google Scholar 

  • Kagan YY (2002) Aftershock zone scaling. Bull Seismol Soc Am 92(2):641–655. https://doi.org/10.1785/0120010172

    Article  Google Scholar 

  • Kalkan E, Gülkan P, Yilmaz N, Çelebi M (2009) Reassessment of probabilistic seismic hazard in the Marmara Region. Bull Seismol Soc Am 99(4):2127–2146. https://doi.org/10.1785/0120080285

    Article  Google Scholar 

  • Kallberg KT (1969) Seismic risk of Southern California. M.I.T. Department of Civil Engineering, Research Report, pp R69–R31

    Google Scholar 

  • Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis part I: estimation of maximum regional magnitude Mmax. Pure Appl Geophys 152(3):413–442. https://doi.org/10.1007/s000240050161

    Article  Google Scholar 

  • Kim B, Hashash YM (2013) Site response analysis using downhole array recordings during the March 2011 Tohoku-Oki earthquake and the effect of long-duration ground motions. Earthq Spectra 29:37–54. https://doi.org/10.1193/1.4000114

    Article  Google Scholar 

  • Kolat C, Ulusay R, Suzen ML (2012) Development of geotechnical microzonation model for Yenisehir (Bursa Turkey) located at a seismically active region. Eng Geol 127:36–53. https://doi.org/10.1016/j.enggeo.2011.12.014

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical Earthquake Engineering. PrenticeHall, Upper Saddle River, New Jersey, p 653

    Google Scholar 

  • Kramer SL (2009a) CEE 526 Geotechnical Earthquake Engineering lecture notes. University of Washington, Seattle, WA-USA

    Google Scholar 

  • Kramer SL (2009b) Oral communication. University of Washington, Department of Civil and Environmental Engineering

    Google Scholar 

  • Kumar A, Baro O, Harinarayan NH (2016) Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values. Nat Hazards 81(1):543–572. https://doi.org/10.1007/s11069-015-2095-x

    Article  Google Scholar 

  • Martínez-Pagán P, Navarro M, Pérez-Cuevas J, Alcalá FJ, García-Jerez A, Rancisco Vidal F (2018) Shearwave velocity structure from MASW and SPAC methods: The case of Adra town. SE Spain near Surf Geophys 16(3):356–371. https://doi.org/10.3997/1873-0604.2018012

    Article  Google Scholar 

  • Midorikawa S (1987) Prediction of isoseismal map in the Kanto plain due to hypothetical earthquake. J Struct Eng 33:43–48

    Google Scholar 

  • NEHRP 2003, National Earthquake Hazards Reduction Program, https://www.nehrp.gov/index.htm

  • Okamoto S (1973) Introduction to earthquake engineering. University of Tokyo Press, Tokyo, Japan

    Google Scholar 

  • Ordonez G (2012) Shake2000 : a computer program for the 1-D analysis of geotechnical earthquake engineering problems. GeoMotions, LLC, Washington

    Google Scholar 

  • Park C (2013) MASW for geotechnical site investigation. Lead Edge 32(6):656–662. https://doi.org/10.1190/tle32060656.1

    Article  Google Scholar 

  • PEER (2023), Pacific Earthquake Engineering Research Center, Strong Motion Database. https://ngawest2.berkeley.edu

  • Perinçek D (1979) The geology of Hazro-Korudağ-Çüngüş-Maden-Ergani-Hazar-Elazığ Malatya area. Geological Society of Turkey, Ankara

    Google Scholar 

  • Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA project. Earthq Spectra 24(1):3–21. https://doi.org/10.1193/1.2894833

    Article  Google Scholar 

  • Puri N, Jain A, Mohanty P, Bhattacharya S (2017) Earthquake response analysis of sites of Haryana using DEEPSOIL software. 6th International Conference on Smart computing and Comminications ICSCC2017, 7-8 December, Kurukshetra, India

  • Rayhani MHT, El Naggar MH, Tabatabaei SH (2008) Nonlinear analysis of local site effects on seismic ground response in the Bam earthquake. Geotech Geol Eng 26(1):91–100. https://doi.org/10.1007/s10706-007-9149-0

    Article  Google Scholar 

  • Richter CF (1958) Elementary Seismology. W.H. Freeman and Company, San Francisco. https://doi.org/10.3402/tellusa.v11i2.9289

    Book  Google Scholar 

  • Sana H, Nath SK, Gujral KS (2019) Site response analysis of the Kashmir valley during the 8 October 2005 Kashmir earthquake (Mw 7.6) using a geotechnical dataset. Bull Eng Geol Environ 78(4):2551–2563. https://doi. org/10.1007/s10064-018-1254-1

  • Saroglu F, Emre Ö (1992) Kuscu İ (1992) The East Anatolian fault zone of Turkey. Annales Tectonicae 6:99–125

    Google Scholar 

  • Savage MK, Rupp SH (2000) Foreshock probabilities in New Zealand. N Z J Geol Geophys 43:461–469. https://doi.org/10.1080/00288306.2000.9514902

    Article  Google Scholar 

  • Schnabel P, Seed HB, Lysmer J (1972) Modification of seismograph records for effects of local soil conditions. Bull Seismol Soc Am 62(6):1649–1664. https://pubs.geoscienceworld.org/ssa/bssa/articleabstract/62/6/1649/117185/modification-of seismog

    Article  Google Scholar 

  • Seed H, Idriss I (1981) Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. ASCE National Convention (MO), pp 481–544

  • Seed H, Wong R, Idriss I, Tokimatsu K (1986) Moduli and dam** factors for dynamic analyses of cohesionless soils. J Geotech Eng 112(11):1016–1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)

    Article  Google Scholar 

  • Seed HB, Idriss IM (1970) Soil moduli and dam** factors for dynamic response analyses. Report No. EERC 70/10,. Earthquake Engineering Research Center, Berkeley, California

    Google Scholar 

  • Selcuk L, Ciftci Y (2007) Microzonation of the Plio-Quaternary soils: a study of the liquefaction risk potential in the Lake Van Basin. Turkey Bull Eng Geol Environ 66(2):161–176. https://doi.org/10.1007/s10064-006-0052-3

    Article  Google Scholar 

  • Sengör AMC, Canitez N (1982) The North Anatolian fault. In: Berckhemer H, Hsul K (eds) Alpine and Mediterranean Geodynamics, vol 7. American Geophysical Union, Geodynamics Series, pp 205–216

    Chapter  Google Scholar 

  • Sengör AMC, Görür N, Şaroğlu F (1985) Strike slip faulting and related basin formations in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-Slip Faulting and Basin Formation. Society of Economic

    Google Scholar 

  • Silahtar A (2022) Evaluation of local soil conditions with 1D nonlinear site response analysis of Arifiye (Sakarya District). Turkey Nat Haz 116(3):1–25. https://doi.org/10.1007/s11069-022-05695-z

    Article  Google Scholar 

  • Silahtar A, Kanbur Z (2021) 1D nonlinear site response analysis of the Isparta Basin (Southwestern Turkey) with surface wave (ReMi) and borehole data. Environ Earth Sci 80:268. https://doi.org/10.1007/s12665-021-09551-4

    Article  Google Scholar 

  • Sonmezer YB, Akbas SO, Isik NS (2015) Assessment of the peak acceleratıon, amplıfıcatıon ratıo and fundamental perıod propertıes for the Kırıkkale provınce settlement area. J Fac Eng Archit Gazi Univ 30(4):711–721

    Google Scholar 

  • Sonmezer YB, Bas S, Isik NS, Akbaş SO (2018) Linear and nonlinear site response analyses to determine dynamic soil properties of Kırıkkale. Geomechanics anad. Engineering 16(4):435–448. https://doi.org/10.12989/gae.2018.16.4.435

    Article  Google Scholar 

  • Sonmezer YB, Celiker M (2020) Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect. Geomech Eng 20(2):131–146. https://doi.org/10.12989/gae.2020.20.2.131

    Article  Google Scholar 

  • Sonmezer YB, Celiker M, Bas S (2019) An investigation on the evaluation of dynamic soil characteristics of the Elazig City through the 1-D equivalent linear site-response analysis. Bull Eng Geol Environ 78(7):4689–4712. https://doi.org/10.1007/s10064-018-01450-6

    Article  Google Scholar 

  • Sun J, Golesorkhi R, Seed H (1988) Book Chapter: Dynamic moduli and dam** ratios for cohesive soils. Research Report; Earthquake Engineering Research Center, Berkeley, CA, USA

    Google Scholar 

  • Sungurlu O, Perinçek D, Kurt G, Tuna E, Dülger S, Çelikdemir E, Naz H (1985) Geology of the Elazığ-Hazar-Palu area. Türk Cumhur. Pet İşleri Genel Müdür Derg 29:83–191

    Google Scholar 

  • TBSR (2018) Turkish Building Seismic Regulation 2018. Disaster and Emergency Management Directorate, Ankara, Turkey

    Google Scholar 

  • Tunç B, Güven T, Ulutaş E, Irmak TS, Sertçelik F, Çetinol T, Çaka D, Özer MF, Kenar Ö (2003) Doğu Marmara Bölgesi için Deneysel En Büyük Yatay İvme Uzaklık Azalım İlişkisi ve Kocaeli’nin Probalistik Deprem Tehlikesi. Kocaeli, Deprem Sempozyomu

    Google Scholar 

  • Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong ground motion data and iso-acceleration map of Turkey. Eng Geol 74:265–291. https://doi.org/10.1016/j.enggeo.2004.04.002

    Article  Google Scholar 

  • Unutmaz B, Siyahi B, Fahjan Y, Akbaş B (2011) Derin Alüvyon Dolgunun Doğrusal Olmayan Davranışının Eşdeğer Lineer Ve Doğrusal Olmayan Yöntemlerle Karşılaştırılması. In: 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı 11-14 Ekim ODTÜ, Ankara

  • Utsu T, Ogata Y, Matsu’ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33. https://doi.org/10.4294/jpe1952.43.1

    Article  Google Scholar 

  • Van Dyck JFM (1985) Statistical analysis of earthquake catalogs. Ph.D. Thesis,. Civil Engineering Department, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Vucetic M, Dobry R (1988) Degradation of marine clays under cyclic loading. J Geotech Eng 114(2):133–149. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(133)

    Article  Google Scholar 

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng 117(1):89–107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002. https://doi.org/10.1785/BSSA0840040974

    Article  Google Scholar 

  • **aohui W, **aojun L, Aiwen L et al (2020) Seismic analysis of soil-structure system of nuclear power plant on non-rock site via shaking table test. Soil Dyn Earthq Eng 136:106209. https://doi.org/10.1016/j.soildyn.2020.106209

    Article  Google Scholar 

  • Yalçınkaya E (2010) Why is soil so important. Society of Geophysics Engineering Publication

    Google Scholar 

  • Yang J, Yan XR (2009) Factors affecting site response to multi-directional earthquake loading. Eng Geol 107:77–87. https://doi.org/10.1016/j.enggeo.2009.04.002

    Article  Google Scholar 

  • Yıldız Ö (2022) Seismic site characterization of Battalgazi in Malatya. Turkey Arab J Geosci 15:867. https://doi.org/10.1007/s12517-022-10170-x

    Article  Google Scholar 

  • Yücemen MS (2011) Olasılıksal Sismik Tehlike Analizi: Genel Bakış ve Yeni Nesil Deprem Tehlike Haritaları. 7. Ulusal Deprem Mühendisliği Konferansı, İstanbul

  • Zerva A, Stephenson WR (2011) Stochastic characteristics of seismic excitations at a non-uniform (rock and soil) site. Soil Dyn Earthq Eng 31:1261–1284. https://doi.org/10.1016/j.soildyn.2011.05.006

    Article  Google Scholar 

  • Zhou YG, Chen J, Chen YM, Kutter BL (2017) Centrifuge modeling and numerical analysis on seismic site response of deep offshore clay deposits. Eng Geol 227:54–68. https://doi.org/10.1016/j.enggeo.2017.01.008

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude for their help in obtaining the data in the study area to ASLANTAŞ Eng. Cons. Ltd. and Elazig Geotechnical companies.

Author information

Authors and Affiliations

Authors

Contributions

All authors were responsible for field studies, data analysis, and results evaluation. All authors conceptualized the study and contributed to the writing — review, and editing.

Corresponding author

Correspondence to Yetis Bulent Sonmezer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonmezer, Y.B., Celiker, M. & Simsek, H. Evaluation of the seismic site characterization of Kovancilar (Elazig), Turkey. Bull Eng Geol Environ 83, 42 (2024). https://doi.org/10.1007/s10064-023-03509-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03509-5

Keywords

Navigation