Log in

Central composite rotatable design for non-convex optimization of removal efficiency of hydroxychloroquine in an electrochemical cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hydroxychloroquine sulfate (HCQ), an against-COVID-19 drug, is a dangerous organic compound in wastewater. In this study, 0.6 L of an HCQ solution (50 mg L−1) was electro-oxidized in a batch electrochemical cell (BEC) with two boron-doped diamond (BDD) electrodes. The optimal operating conditions were established by DoE-driven non-convex constrained optimization. A central composite rotatable design (CCRD) was applied to model the chemical oxygen demand (COD) removal efficiency and to evaluate the influence of current density (j): 10–120 mA cm−2, initial pH: 2–12, and stirring speed (Ω): 400–600 rpm. Experimental results were modeled by a reduced third-order polynomial function having a determination coefficient (R2), root mean square error (RMSE), mean square error (MSE), and coefficient of variation (C.V.) of 0.9906, 0.0460, 0.0021, and 3.72%, respectively. This validates the predictive capacity of the fitted model and the efficiency of the employed electro-oxidation process. The optimal operating vector was j = 46.36 mA cm−2, pH0 = 12.04, and Ω = 584 rpm within 5 h of reaction time, attaining a maximum COD removal efficiency of 85.55% with an energy consumption of 1.24 kW h L−1 and a total operating cost of 0.067 USD$ L−1. Also, a total organic carbon removal of 52.5% was achieved. Additionally, mathematical models were established to fit the temporary profiles of HCQ degradation, COD, and TOC removal. The estimated apparent kinetic constants (kapp) were 1.21 h−1, 0.26 h−1, and 2.65 mg L−1 h−1, respectively. Finally, it was concluded that the assessed electrochemical process could help mineralizing wastewater containing HCQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a :

Electrode surface (cm2)

ANOVA:

Analysis of variance

BDD:

Boron-doped diamond

BEC:

Batch electrochemical cell

C :

Concentration (mg L−1)

CCD:

Central composite design

CCRD::

Central composite rotatable design

COD:

Chemical oxygen demand (mg L−1)

C.V.:

Coefficient of variation (%)

EC:

Total energy consumption (kW h)

E:

Electricity used (kW h)

F-value:

Ratio of the mean square’s treatment to the mean squares error

GWE:

Global warming potential

HCQ:

Hydroxychloroquine

j :

Current density (mA cm−2)

i :

Current intensity (µA)

K :

Factor number

k :

Kinetic constant (h−1)

m :

Mass of electrolyte (kg)

MSE:

Mean square error

OH :

Hydroxyl radical

OC:

Operating cost (USD$)

pH:

Power of hydrogen (dimensionless)

p-value::

Probability of getting a result at least as extreme as the one that was observed

P :

Supplier catalog nominal power (kW h)

RMSE:

Root mean square error

R2 :

Determination coefficient

t :

Electrolysis time (h)

TOC:

Total organic carbon (mg L−1)

T :

Temperature (°C)

U :

Mean voltage cell (V)

V :

Volume treated (L)

VIFs:

Variance inflation factor

x :

Encrypted independent variables

α :

Rotatability (1.68)

γ :

Values of the coefficient of the polynomial equation

Δ:

Increased

ξ :

Electricity price (USD$ (kW h)−1)

Ω:

Stirred speed (rpm)

η :

Efficiency (%)

ϕ :

Electrolyte price (USD$ kg−1)

Adj:

Adjusted

app:

Apparent

Elec:

Electrode

Model:

Model

M:

Mineralization

Pred:

Predicted

Pump:

Recirculation pump

Stirred:

Magnetic stirred

Tr:

Treated

i :

Number of independent variables

0:

Initial

References

  1. Dima A, Jurcut C, Arnaud L (2021) Hydroxychloroquine in systemic and autoimmune diseases: where are we now? Joint Bone Spine 88:105143. https://doi.org/10.1016/J.JBSPIN.2021.105143

    Article  CAS  PubMed  Google Scholar 

  2. Geleris J, Sun Y, Platt J et al (2020) Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 382:2411–2418. https://doi.org/10.1056/NEJMOA2012410/SUPPL_FILE/NEJMOA2012410_DISCLOSURES.PDF

    Article  CAS  PubMed  Google Scholar 

  3. Kargar F, Bemani A, Sayadi MH, Ahmadpour N (2021) Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. J Photochem Photobiol A Chem 419:113453. https://doi.org/10.1016/J.JPHOTOCHEM.2021.113453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. United Nations (2016) Sustainable Development Goals (SDG 6) | United Nations Western Europe. In: United Nations. https://unric.org/en/sdg-6/. Accessed 22 Jan 2024

  5. Albornoz LL, Soroka VD, Silva MCA (2021) Photo-mediated and advanced oxidative processes applied for the treatment of effluents with drugs used for the treatment of early COVID-19: review. Environmental Advances 6:100140. https://doi.org/10.1016/j.envadv.2021.100140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuroda K, Li C, Dhangar K, Kumar M (2021) Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Sci Total Environ 776:145740. https://doi.org/10.1016/J.SCITOTENV.2021.145740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dabić D, Babić S, Škorić I (2019) The role of photodegradation in the environmental fate of hydroxychloroquine - ScienceDirect. Chemospherere 230:268–277

    Article  Google Scholar 

  8. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2023) A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl Catal B 328:. https://doi.org/10.1016/J.APCATB.2023.122430

  9. Oturan MA (2021) Outstanding performances of the BDD film anode in electro-Fenton process: applications and comparative performance. Curr Opin Solid State Mater Sci 25:100925. https://doi.org/10.1016/J.COSSMS.2021.100925

    Article  CAS  Google Scholar 

  10. Espinoza-Montero PJ, Alulema-Pullupaxi P, Frontana-Uribe BA, Barrera-Diaz CE (2022) Electrochemical production of hydrogen peroxide on boron-doped diamond (BDD) electrode. Curr Opin Solid State Mater Sci 26:100988. https://doi.org/10.1016/J.COSSMS.2022.100988

    Article  CAS  Google Scholar 

  11. Queiroz J, Moura D, Santos E, et al (2020) Electrochemical incineration of short-chain carboxylic acids with Nb-supported boron doped diamond anode: supporting electrolyte into the electrogenerated oxidant species (Hydroxyl radicals, hydrogen peroxide and persulfate). Quim Nova 43:253–260. https://doi.org/10.21577/0100-4042.20170483

  12. Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem 11:62–71. https://doi.org/10.1016/J.COELEC.2018.07.010

    Article  Google Scholar 

  13. Hu Z, Cai J, Song G et al (2021) Anodic oxidation of organic pollutants: anode fabrication, process hybrid and environmental applications. Curr Opin Electrochem 26:100659. https://doi.org/10.1016/J.COELEC.2020.100659

    Article  CAS  Google Scholar 

  14. dos Santos AJ, Kronka MS, Fortunato GV, Lanza MRV (2021) Recent advances in electrochemical water technologies for the treatment of antibiotics: a short review. Curr Opin Electrochem 26:100674. https://doi.org/10.1016/J.COELEC.2020.100674

    Article  Google Scholar 

  15. Salazar-Banda GR, de Santos G, OS, Duarte Gonzaga IM, et al (2021) Developments in electrode materials for wastewater treatment. Curr Opin Electrochem 26:100663. https://doi.org/10.1016/J.COELEC.2020.100663

    Article  CAS  Google Scholar 

  16. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361

    Article  CAS  PubMed  Google Scholar 

  17. Pointer Malpass GR, de Jesus MA (2021) Recent advances on the use of active anodes in environmental electrochemistry. Curr Opin Electrochem 27:100689. https://doi.org/10.1016/J.COELEC.2021.100689

    Article  CAS  Google Scholar 

  18. Herraiz-Carboné M, Santos A, Checa-Fernández A et al (2024) Removal of organochlorine pollutants from DNAPL-saturated groundwater using electrolysis with MMO anodes. Chem Eng J 486:150238. https://doi.org/10.1016/J.CEJ.2024.150238

    Article  Google Scholar 

  19. Barisci S, Suri R (2023) Degradation of emerging per- and polyfluoroalkyl substances (PFAS) using an electrochemical plug flow reactor. J Hazard Mater 460:132419. https://doi.org/10.1016/J.JHAZMAT.2023.132419

    Article  CAS  PubMed  Google Scholar 

  20. Dehkordi NR, Knapp M, Compton P et al (2022) Degradation of dissolved RDX, NQ, and DNAN by cathodic processes in an electrochemical flow-through reactor. J Environ Chem Eng 10:107865. https://doi.org/10.1016/J.JECE.2022.107865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cornejo OM, Murrieta MF, Castañeda LF, Nava JL (2020) Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: a critical review. Electrochim Acta 331:135373

    Article  CAS  Google Scholar 

  22. Cordeiro-Junior PJM, Lobato Bajo J, Lanza MRDV, Rodrigo Rodrigo MA (2022) Highly efficient electrochemical production of hydrogen peroxide using the GDE technology. Ind Eng Chem Res 61:10660–10669. https://doi.org/10.1021/ACS.IECR.2C01669/ASSET/IMAGES/LARGE/IE2C01669_0009.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sandoval MA, Fuentes R, Pérez T et al (2021) Modelling and simulation of H2–H2O bubbly flow through a stack of three cells in a pre-pilot filter press electrocoagulation reactor. Sep Purif Technol 261:118235. https://doi.org/10.1016/J.SEPPUR.2020.118235

    Article  CAS  Google Scholar 

  24. He Y, Zhang P, Huang H et al (2020) Electrochemical degradation of herbicide diuron on flow-through electrochemical reactor and CFD hydrodynamics simulation. Sep Purif Technol 251:117284. https://doi.org/10.1016/J.SEPPUR.2020.117284

    Article  CAS  Google Scholar 

  25. Walsh FC, Arenas LF, de León CP (2021) Editors’ choice—critical review—the bipolar trickle tower reactor: concept, development and applications. J Electrochem Soc 168:023503. https://doi.org/10.1149/1945-7111/ABDD7A

    Article  CAS  Google Scholar 

  26. Mousset E, Trellu C, Olvera-Vargas H et al (2021) Electrochemical technologies coupled with biological treatments. Curr Opin Electrochem 26:100668. https://doi.org/10.1016/J.COELEC.2020.100668

    Article  CAS  Google Scholar 

  27. Clematis D, Panizza M (2021) Electrochemical oxidation of organic pollutants in low conductive solutions. Curr Opin Electrochem 26:100665. https://doi.org/10.1016/J.COELEC.2020.100665

    Article  CAS  Google Scholar 

  28. Arenas LF, Ponce de León C, Walsh FC (2020) Critical review—the versatile plane parallel electrode geometry: an illustrated review. J Electrochem Soc 167:023504. https://doi.org/10.1149/1945-7111/AB64BA

    Article  CAS  Google Scholar 

  29. Castillo-Cabrera GX, Pliego-Cerdán CI, Méndez E, Espinoza-Montero PJ (2024) Step-by-step guide for electrochemical generation of highly oxidizing reactive species on BDD for beginners. Front Chem 11:1298630. https://doi.org/10.3389/FCHEM.2023.1298630

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rodríguez-Peña M, Natividad R, Barrera-Díaz CE, et al (2024) Current perspective of advanced electrochemical oxidation processes in wastewater treatment and life cycle analysis. Int J Electrochem Sci 100589. https://doi.org/10.1016/J.IJOES.2024.100589

  31. Song J, Li W, Li Y et al (2019) Treatment of landfill leachate RO concentration by iron–carbon micro–electrolysis (ICME) coupled with H2O2 with emphasis on convex optimization method. Environmental Pollutants and Bioavailability 31:49–55. https://doi.org/10.1080/09542299.2018.1552086

    Article  CAS  Google Scholar 

  32. Zhang B, Sun J, Wang Q et al (2017) Electro-Fenton oxidation of coking wastewater: optimization using the combination of central composite design and convex optimization method. Environ Technol 38:2456–2464. https://doi.org/10.1080/09593330.2016.1265591

    Article  CAS  PubMed  Google Scholar 

  33. Regalado-Méndez A, Zavaleta-Avendaño J, Peralta-Reyes E, Natividad R (2023) Convex optimization for maximizing the degradation efficiency of chloroquine in a flow-by electrochemical reactor. J Solid State Electrochem 27:3163–3176. https://doi.org/10.1007/S10008-023-05452-7/FIGURES/5

    Article  Google Scholar 

  34. Hemavathi M, Varghese E, Shekhar S et al (2022) Robustness of sequential third-order response surface design to missing observations. Journal of Taibah University for Science 16:270–279. https://doi.org/10.1080/16583655.2022.2046398

    Article  Google Scholar 

  35. Regalado-Méndez A, Ruiz M, Hernández-Servín JA et al (2020) Electrochemical mineralization of ibuprofen on BDD electrodes in an electrochemical flow reactor: numerical optimization approach. Processes 8:1666. https://doi.org/10.3390/PR8121666

    Article  Google Scholar 

  36. Kumar A, Wu G, Ali MZ et al (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput 56:100693. https://doi.org/10.1016/J.SWEVO.2020.100693

    Article  Google Scholar 

  37. Hoseini N, Nobakhtian S (2018) A new trust region method for nonsmooth nonconvex optimization. Optimization 67:1265–1286. https://doi.org/10.1080/02331934.2018.1470175

    Article  Google Scholar 

  38. Jorge N, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York, NY

    Google Scholar 

  39. Henrion D, Lasserre JB (2004) Solving nonconvex optmization problems. IEEE Control Syst 24:72–83. https://doi.org/10.1109/MCS.2004.1299534

    Article  Google Scholar 

  40. Boujelbane F, Nasr K, Sadaoui H et al (2022) Decomposition mechanism of hydroxychloroquine in aqueous solution by gamma irradiation. Chem Pap 76:1777–1787. https://doi.org/10.1007/S11696-021-01969-1/FIGURES/10

    Article  CAS  Google Scholar 

  41. da Silva PL, Nippes RP, Macruz PD et al (2021) Photocatalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite. Water Sci Technol 84:763–776. https://doi.org/10.2166/WST.2021.265

    Article  PubMed  Google Scholar 

  42. Bensalah N, Midassi S, Ahmad MI, Bedoui A (2020) Degradation of hydroxychloroquine by electrochemical advanced oxidation processes. Chem Eng J 402:126279. https://doi.org/10.1016/J.CEJ.2020.126279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alves da Silva AE, de Abreu PMB, Geraldes DC, de Oliveira NL (2021) Hydroxychloroquine: pharmacological, physicochemical aspects and activity enhancement through experimental formulations. J Drug Deliv Sci Technol 63:102512. https://doi.org/10.1016/J.JDDST.2021.102512

    Article  CAS  Google Scholar 

  44. Mamontov E, Cheng Y, Daemen LL et al (2020) Effect of hydration on the molecular dynamics of hydroxychloroquine sulfate. ACS Omega 5:21231–21240. https://doi.org/10.1021/acsomega.0c03091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khalafalla M, Belgacem CH, Ismail IA, Chaieb K (2021) Uv-vis and electrical impedance characterizations of the hydroxychloroquine-zinc complex in the phospholipid-like oleic acid phase. SSRN Electron J. https://doi.org/10.2139/ssrn.3870977

    Article  Google Scholar 

  46. Maldonado S, Rodrigo M, Cañizares P et al (2020) On the degradation of 17-β estradiol using boron doped diamond electrodes. Processes 8:710. https://doi.org/10.3390/pr8060710

    Article  CAS  Google Scholar 

  47. Peralta E, Ruíz M, Martínez G, et al (2018) Degradation of 4-chlorophenol in a batch electrochemical reactor using BDD electrodes. Int J Electrochem Sci 13:4625–4639. https://doi.org/10.20964/2018.05.21

  48. Baird RW, Eaton AD, Rice EW (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, Washington, DC

    Google Scholar 

  49. Mechati S, Zamouche M, Tahraoui H, et al (2023) Modeling and optimization of hybrid Fenton and ultrasound process for crystal violet degradation using AI techniques. Water 2023, Vol 15, Page 4274 15:4274.https://doi.org/10.3390/W15244274

  50. Kim S, Kim YK (2004) Apparent desorption kinetics of phenol in organic solvents from spent activated carbon saturated with phenol. Chem Eng J 98:237–243. https://doi.org/10.1016/J.CEJ.2003.10.006

    Article  CAS  Google Scholar 

  51. Karunasingha DSK (2022) Root mean square error or mean absolute error? Use their ratio as well. Inf Sci (N Y) 585:609–629. https://doi.org/10.1016/J.INS.2021.11.036

    Article  Google Scholar 

  52. Medeiros de Araújo D, Dos Santos EV, Martínez-Huitle CA, De Battisti A (2022) Achieving electrochemical-sustainable-based solutions for monitoring and treating hydroxychloroquine in real water matrix. Appl Sci 12:699. https://doi.org/10.3390/app12020699

    Article  CAS  Google Scholar 

  53. Divyapriya G, Nidheesh PV (2021) Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications. Curr Opin Solid State Mater Sci 25:100921. https://doi.org/10.1016/J.COSSMS.2021.100921

    Article  CAS  Google Scholar 

  54. Ganiyu SO, Martínez-Huitle CA, Oturan MA (2021) Electrochemical advanced oxidation processes for wastewater treatment: advances in formation and detection of reactive species and mechanisms. Curr Opin Electrochem 27:100678. https://doi.org/10.1016/J.COELEC.2020.100678

    Article  CAS  Google Scholar 

  55. Ahmadi MF, da Silva ÁRL, Martínez-Huitle CA, Bensalah N (2021) Understanding the electro-catalytic effect of benzene ring substitution on the electrochemical oxidation of aniline and its derivatives using BDD anode: cyclic voltammetry, bulk electrolysis and theoretical calculations. Electrochim Acta 369:137688. https://doi.org/10.1016/J.ELECTACTA.2020.137688

    Article  CAS  Google Scholar 

  56. Bensalah N, Faouzi Ahmadi M, Martinez-Huitle CA (2021) Electrochemical oxidation of 2-chloroaniline in single and divided electrochemical flow cells using boron doped diamond anodes. Sep Purif Technol 263:118399. https://doi.org/10.1016/J.SEPPUR.2021.118399

    Article  CAS  Google Scholar 

  57. Martínez-Huitle CA, Brillas E (2021) A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode. Curr Opin Solid State Mater Sci 25:100926. https://doi.org/10.1016/J.COSSMS.2021.100926

    Article  Google Scholar 

  58. Peralta-Reyes E, Vizarretea-Vásquez D, Natividad R et al (2022) Electrochemical reforming of glycerol into hydrogen in a batch-stirred electrochemical tank reactor equipped with stainless steel electrodes: Parametric optimization, total operating cost, and life cycle assessment. J Environ Chem Eng 10:108108. https://doi.org/10.1016/J.JECE.2022.108108

    Article  CAS  Google Scholar 

  59. Montgomery DC (2019) Design and Analysis of Experiments, 10th edn. Wiley, New York

    Google Scholar 

  60. Mequanient MB, Kebede HH (2023) Simulation of sediment yield and evaluation of best management practices in Azuari watershed, Upper Blue Nile Basin. H2Open Journal 6:493–506. https://doi.org/10.2166/H2OJ.2023.159

  61. Tyagi K, Rane C, Harshvardhan, Manry M (2022) Regression analysis. Artificial intelligence and machine learning for EDGE computing 53–63. https://doi.org/10.1016/B978-0-12-824054-0.00007-1

  62. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJK (2011) Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology. J Hazard Mater 189:404–413. https://doi.org/10.1016/J.JHAZMAT.2011.02.052

    Article  CAS  PubMed  Google Scholar 

  63. Santana-Martínez G, Roa-Morales G, Gómez-Olivan L, et al (2021) Downflow Bubble Column Electrochemical Reactor (DBCER): in-situ production of H2O2 and O3 to conduct Electroperoxone Process. J Environ Chem Eng 105148. https://doi.org/10.1016/j.jece.2021.105148

  64. Natividad R, Hurtado L, Romero R, et al (2019) Nanostructured metallic oxides for water remediation. Engineering Materials 91–119. https://doi.org/10.1007/978-3-030-33745-2_4/COVER

  65. Amado-Piña D, Roa-Morales G, Molina-Mendieta M, et al (2022) E-peroxone process of a chlorinated compound: oxidant species, degradation pathway and phytotoxicity. J Environ Chem Eng 108148. https://doi.org/10.1016/J.JECE.2022.108148

  66. Marselli B, Garcia-Gomez J, Michaud P-A et al (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79. https://doi.org/10.1149/1.1553790/XML

    Article  CAS  Google Scholar 

  67. Goh CJ, Yang XQ (1997) A sufficient and necessary condition for nonconvex constrained optimization. Appl Math Lett 10:9–12. https://doi.org/10.1016/S0893-9659(97)00075-X

    Article  Google Scholar 

  68. Liu G, Zhang C, Zhou Y, Yan Q (2021) Insight into the overpotential and thermodynamic mechanism of hydroxyl radical formation on diamond anode. Appl Surf Sci 565:150559. https://doi.org/10.1016/J.APSUSC.2021.150559

    Article  CAS  Google Scholar 

  69. Bany Abdelnabi AA, Al Theeb N, Almomani MA et al (2022) Effect of electrode parameters in the electro-production of reactive oxidizing species via boron-doped diamond under batch mode. Water Environ Res 94:e10830. https://doi.org/10.1002/WER.10830

    Article  CAS  PubMed  Google Scholar 

  70. Comninellis C, Kapalka A, Malato S et al (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776. https://doi.org/10.1002/JCTB.1873

    Article  CAS  Google Scholar 

  71. Shin YU, Yoo HY, Ahn YY et al (2019) Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: multiple pathways for sulfate radical generation. Appl Catal B 254:156–165. https://doi.org/10.1016/J.APCATB.2019.04.060

    Article  CAS  Google Scholar 

  72. Cai J, Niu T, Shi P et al (2019) Boron-doped diamond for hydroxyl radical and sulfate radical anion electrogeneration, Transformation, and Voltage-Free Sustainable Oxidation. Small 15:1900153. https://doi.org/10.1002/SMLL.201900153

    Article  CAS  Google Scholar 

  73. Wacławek S, Lutze HV, Grübel K et al (2017) Chemistry of persulfates in water and wastewater treatment: a review. Chem Eng J 330:44–62. https://doi.org/10.1016/J.CEJ.2017.07.132

    Article  Google Scholar 

  74. Farhat A, Keller J, Tait S, Radjenovic J (2015) Removal of persistent organic contaminants by electrochemically activated sulfate. Environ Sci Technol 49:14326–14333. https://doi.org/10.1021/acs.est.5b02705

    Article  CAS  PubMed  Google Scholar 

  75. Ganiyu SO, Martínez-Huitle CA (2019) Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment. ChemElectroChem 6:2379–2392. https://doi.org/10.1002/CELC.201900159

    Article  CAS  Google Scholar 

  76. Groenen Serrano K (2021) A critical review on the electrochemical production and use of peroxo-compounds. Curr Opin Electrochem 27:100679. https://doi.org/10.1016/J.COELEC.2020.100679

    Article  CAS  Google Scholar 

  77. Zhi D, Lin Y, Jiang L et al (2020) Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: a review. J Environ Manage 260:110125. https://doi.org/10.1016/J.JENVMAN.2020.110125

    Article  CAS  PubMed  Google Scholar 

  78. Giannakis S, Lin KYA, Ghanbari F (2021) A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chem Eng J 406:127083. https://doi.org/10.1016/J.CEJ.2020.127083

    Article  CAS  Google Scholar 

  79. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340. https://doi.org/10.1039/B517632H

    Article  PubMed  Google Scholar 

  80. Tang C, Cui D, Li Z et al (2023) Electrooxidation degradation of hydroxychloroquine in wastewater using a long-acting Ti-based PbO2 anode with an arc-sprayed (Ti, Zr)N interlayer. Chemosphere 335:139074. https://doi.org/10.1016/J.CHEMOSPHERE.2023.139074

    Article  CAS  PubMed  Google Scholar 

  81. Regalado-Méndez A, Ramos-Hernández G, Natividad R, et al (2023) Parametric mathematical model of the electrochemical degradation of 2-chlorophenol in a flow-by reactor under batch recirculation mode. Water 2023, Vol 15, Page 4276 15:4276. https://doi.org/10.3390/W15244276

  82. de Araújo DM, Dos Santos E V., Martínez-Huitle CA, De Battisti A (2022) Achieving electrochemical-sustainable-based solutions for monitoring and treating hydroxychloroquine in real water matrix. Applied Sciences (Switzerland) 12. https://doi.org/10.3390/app12020699

  83. Ashrafi P, Nematollahi D, Shabanloo A et al (2023) A detailed electrochemical study of anti-malaria drug hydroxychloroquine: application of a highly porous 3D multi-metal oxide carbon felt/β-PbO2-ZrO2−MoOx electrode for its electrocatalytic degradation. Electrochim Acta 458:142555. https://doi.org/10.1016/j.electacta.2023.142555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of Derek Joe Brockett, an English professor at Universidad del Mar, is acknowledged for his support in correcting the English writing of this work. Finally, authors would like to thank the staff of the environmental and investigation laboratories for dedicating their time and effort to facilitate the materials to conduct this research work.

Funding

The authors are grateful to Universidad del Mar for providing financial support for the research project CUP: 2II2104. Also, the authors (A.R.-M., E.P.-R., and R.N.) are grateful to the Mexican Council of Science and Technology (CONAHCyT) for the financial support through the Investigators National System program (SNII). Similarly, D.V.-H. thank CONAHCyT-Mexico for providing scholarship No. 809459 for his master’s studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Regalado-Méndez or Ever Peralta-Reyes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1.

Supplementary Material 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regalado-Méndez, A., Vásquez-Hernández, D., Natividad, R. et al. Central composite rotatable design for non-convex optimization of removal efficiency of hydroxychloroquine in an electrochemical cell. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05962-y

Keywords

Navigation