Log in

Density-functional study of the structures and properties of holmium-doped silicon clusters HoSi n (n = 3–9) and their anions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and properties of Ho-doped Si clusters, including their adiabatic electron affinities (AEAs), simulated photoelectron spectra (PESs), stabilities, magnetic moments, and charge-transfer characteristics, were systematically investigated using four density-functional methods. The results show that the double-hybrid functional (which includes an MP2 correlation component) can accurately predict the ground-state structure and properties of Ho-doped Si clusters. The ground-state structures of HoSi n (n = 3–9) are sextuplet electronic states. The structures of these Ho-doped Si clusters (aside from HoSi7) are substitutional. The ground-state structures of HoSi n are quintuplet electronic states. Their predicted AEAs are in excellent agreement with the experimental ones. The mean absolute error in the theoretical AEAs of HoSi n (n = 4–9) is only 0.04 eV. The simulated PESs for HoSi n (n = 5–9) are in good agreement with the experimental PESs. Based on its simulated PES and theoretical AEA, we reassigned the experimental PES of HoSi4 and obtained an experimental AEA of 2.2 ± 0.1 eV. The dissociation energies of Ho from HoSi n and HoSi n (n = 3–9) were evaluated to test the relative stabilities of the clusters. HOMO–LUMO gap analysis indicated that do** the Si clusters with the rare-earth metal atom significantly increases their photochemical reactivity. Natural population analysis showed that the magnetic moments of HoSi n (n = 3-9) and their anions derive mainly from the Ho atom. It was also found that the magnetic moments of Ho in the HoSi n clusters are larger than the magnetic moment of an isolated Ho atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raghavachari K (1986) J Chem Phys 84:5672–5686

    Article  CAS  Google Scholar 

  2. Haertelt M, Lyon JT, Claes P, Haeck JD, Lievens P, Fielicke A (2012) J Chem Phys 136:064301-1–064301-6

    Article  Google Scholar 

  3. Yang JC, Xu WG, **ao WS (2005) J Mol Struct Theochem 719:89–102

    Article  CAS  Google Scholar 

  4. Xu WG, Zhao Y, **e YM, Schaefer HF III (2004) Mol Phys 102(6):579–598

    Article  CAS  Google Scholar 

  5. Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) J Phys Chem A 111:42–49

    Article  CAS  Google Scholar 

  6. Beck SM (1987) J Phys Chem 87:4233–4234

    Article  CAS  Google Scholar 

  7. Li XJ, Claes P, Haertelt M, Lievens P, Janssens E, Fielicke A (2016) Phys Chem Chem Phys 18:6291–6300

    Article  CAS  Google Scholar 

  8. Li XJ, Han Q, Yang XH, Song RJ, Song LM (2016) Chem Phys Lett 659:93–99

    Article  CAS  Google Scholar 

  9. Zhao RN, Han JG (2014) RSC Adv 4:64410–64418

    Article  CAS  Google Scholar 

  10. Guo LJ, Zheng XH, Zeng Z, Zhang C (2012) Chem Phys Lett 550:134–137

    Article  CAS  Google Scholar 

  11. Peng Q, Shen J (2008) J Chem Phys 128:084711-1–084711--11

    Article  Google Scholar 

  12. Cao TT, Feng XJ, Zhao LX, Liang X, Lei YM, Luo YH (2008) Eur Phys J D 49:343–351

    Article  CAS  Google Scholar 

  13. Liu TG, Zhao GF, Wang YX (2011) Phys Lett A 375:1120–1127

    Article  CAS  Google Scholar 

  14. Kenyon AJ (2005) Semicond Sci Technol 20:R65–R84

    Article  CAS  Google Scholar 

  15. Liu TG, Zhang WQ, Li YL (2014) Front Phys 9:210–218

    Article  CAS  Google Scholar 

  16. Hou LY, Yang JC, Liu YM (2016) J Mol Model 22(193):1–10

    CAS  Google Scholar 

  17. Xu W, Ji WX, **ao Y, Wang SG (2015) Comput Theor Chem 1070:1–8

    Article  CAS  Google Scholar 

  18. Cao TT, Zhao LX, Feng XJ, Lei YM, Luo YH (2009) J Mol Struct 895:148–155

    Article  CAS  Google Scholar 

  19. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) J Chem Phys A 106:3702–3705

    Article  CAS  Google Scholar 

  20. Koyasu K, Atobe J, Furuse S, Nakajima A (2008) J Chem Phys 129(214301):1–7

    Google Scholar 

  21. Grubisic A, Ko YJ, Wang H, Bowen KH (2009) J Am Chem Soc 131:10783–10790

    Article  CAS  Google Scholar 

  22. Grubisic A, Wang H, Ko YJ, Bowen KT (2008) J Am Chem 129(054302):1–5

    Google Scholar 

  23. Li CG, Pan LJ, Shao P, Ding LP, Feng HT, Luo DB, Liu B (2015) Theor Chem Acc 134(34):1–11

    Google Scholar 

  24. Zhao GF, Sun JM, Gu YZ, Wang YX (2009) J Chem Phys 131(114312):1–7

    Google Scholar 

  25. Zhao RN, Ren ZY, Guo P, Bai JT, Zhang CH, Han JG (2006) J Phys Chem A 110(11):4071–4079

    Article  CAS  Google Scholar 

  26. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) Chem Phys 372:89–95

    Article  CAS  Google Scholar 

  27. Zhao RN, Han JG, Bai JT, Sheng LS (2010) Chem Phys 378:82–87

    Article  CAS  Google Scholar 

  28. **e XH, Hao DS, Liu YM, Yang JC (2015) Comput Theor Chem 1074:1–8

    Article  CAS  Google Scholar 

  29. Yang JC, Wang J, Hao YR (2015) Theor Chem Acc 134(81):1–11

    Google Scholar 

  30. **e XH, Hao DS, Yang JC (2015) Chem Phys 461:11–19

    Article  CAS  Google Scholar 

  31. Yang JC, Feng YT, **e XH, Wu HW, Liu YM (2016) Theor Chem Acc 135(204):1–12

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  33. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Schwabe T, Grimme S (2006) Phys Chem Chem Phys 8:4398–4401

    Article  CAS  Google Scholar 

  37. Cao XY, Dolg M (2002) J Mol Struct Theochem 581:139–147

    Article  CAS  Google Scholar 

  38. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  39. Buchachenko AA, Chałasin’ski G, Szczesniak MM (2007) Struct Chem 18:769–772

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, revision C.01. Gaussian Inc., Wallingford

  41. Zhang J, Dolg M (2015) Phys Chem Chem Phys 17:24173–24181

    Article  CAS  Google Scholar 

  42. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173–194

    Article  CAS  Google Scholar 

  43. Dolg M, Stoll H, Preuss H (1993) Theor Chim Acta 85:441–450

    Article  CAS  Google Scholar 

  44. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  45. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733

    Article  CAS  Google Scholar 

  46. Noro T, Sekiya M, Koga T (2012) Theor Chem Acc 131(1124):1–8

    CAS  Google Scholar 

  47. Sekiya M, Noro T, Koga T, Shimazaki T (2012) Theor Chem Acc 131:1247

  48. Hess BA (1985) Phys Rev A 32:756–763

    Article  CAS  Google Scholar 

  49. Hess BA (1986) Phys Rev A 33:3742–3748

    Article  CAS  Google Scholar 

  50. Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017

    Article  CAS  Google Scholar 

  51. Lee TJ, Taylor PR (1989) Int J Quant Chem Symp S23:199–207

    Google Scholar 

  52. Jiang W, DeYonker NJ, Wilson AK (2012) J Chem Theory Comput 8:460–468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Kit H. Bowen and Dr. Andrej Grubisic for providing the clear experimental PESs of HoSi n (n = 3–9). This study was supported by the Natural Science Foundation of China (grant no. 21263010), by the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (grant no. NMGIRT-A1603), and by the Inner Mongolia Natural Science Foundation (grant no. 2015MS0216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Yang, J. & Liu, Y. Density-functional study of the structures and properties of holmium-doped silicon clusters HoSi n (n = 3–9) and their anions. J Mol Model 23, 117 (2017). https://doi.org/10.1007/s00894-017-3271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3271-6

Keywords

Navigation