Log in

Diffuse basis functions for small-core relativistic pseudopotential basis sets and static dipole polarizabilities of selected lanthanides La, Sm, Eu, Tm and Yb

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The compact sets of the diffuse functions are suggested for better description of the polarization properties of the lanthanide atoms using the small-core effective core potentials and the corresponding basis sets. The pd and 2pdfg augmentations with exponents 0.028 and 0.015 (p), 0.032 (d) and 0.05 (f,g) are recommended for all lanthanides. Scalar and tensor dipole polarizabilities calculated using the multireference averaged quadratic coupled cluster method agree well with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stalnaker JE, Budker D, Freedman SJ, Guzman JS, Rochester SM, Yashchuk VV (2006) Phys Rev A 73:043416

    Article  CAS  Google Scholar 

  2. Hancox CI, Doret SC, Hummon MT, Krems RV, Doyle JM (2005) Phys Rev Lett 94:013201

    Article  CAS  Google Scholar 

  3. Honda K, Takasu Y, Kuwamoto T, Kumakura M, Takahashi Y, Yabuzaki T (2002) Phys Rev A 66:021401

    Article  CAS  Google Scholar 

  4. Takasu Y, Honda K, Komori K, Kuwamoto T, Kumakura M, Takahashi Y, Yabuzaki T (2003) Phys Rev Lett 90:023003

    Article  CAS  Google Scholar 

  5. Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2003) Phys Rev Lett 91:040404

    Article  CAS  Google Scholar 

  6. Krems RV, Kłos J, Rode MF, Szczȩśniak MM, Chałasiński G, Dalgarno A (2005)Phys Rev Lett 94:013202

    Article  CAS  Google Scholar 

  7. Hancox CI, Doret SC, Hummon MT, Luo L, Doyle JM (2004) Nature (London) 431:281

    Article  CAS  Google Scholar 

  8. Krems RV, Buchachenko AA (2005) J Chem Phys 123:101101

    Article  CAS  Google Scholar 

  9. McClelland JJ, Hanssen JL (2006) Phys Rev Lett 96:143005

    Article  CAS  Google Scholar 

  10. Buchachenko AA, Szczȩśniak MM, Chałasiński G (2006) J Chem Phys 124:114301

    Article  CAS  Google Scholar 

  11. Kłos J (2005) J Chem Phys 123:024308

    Article  CAS  Google Scholar 

  12. Kłos J, Rode MF, Rode JE, Chałasiński G, Szczȩśniak MM (2004) Eur Phys J D 31:429

    Article  CAS  Google Scholar 

  13. Buchachenko AA, Chałasiński G, Szczȩśniak MM, Krems RV (2006) Phys Rev A 74:022705

    Article  CAS  Google Scholar 

  14. Chu X, Groenenboom GC, Dalgarno A (2005) Phys Rev A 72:032703

    Article  CAS  Google Scholar 

  15. Chu X, Dalgarno A, Groenenboom GC (2007) Phys Rev A 75:032723

    Article  CAS  Google Scholar 

  16. Angel JRP, Sandars PGH (1968) Proc Roy Soc London A 305:125

    Article  CAS  Google Scholar 

  17. Khadjavi A, Lurio A, Happer W (1968) Phys Rev 167:128

    Article  CAS  Google Scholar 

  18. Rinkleff R-H, Thorn FZ (1968) Phys D 31:31

    Google Scholar 

  19. Rinkleff R-H, Thorn FZ (1994) Phys D 32:173

    Article  CAS  Google Scholar 

  20. Cao X, Dolg M (2001) J Chem Phys 115:7348

    Article  CAS  Google Scholar 

  21. Cao X, Dolg M (2002) J Mol Struct (THEOCHEM) 581:139

    Article  CAS  Google Scholar 

  22. Dolg M, Stroll H, Preuss H (1989) J Chem Phys 90:1730

    Article  CAS  Google Scholar 

  23. Werner H-J, Knowles PJ, with contribution from Amos RD, et al. computer code MOLPRO (2002)

  24. http://www.molpro.net, http://www.theochem.uni-stuttgart.de/pseudopotentials

  25. Szalay PG, Bartlett R (1993) J Chem Phys Lett 214:481

    Article  CAS  Google Scholar 

  26. Szalay PG, Bartlett RJ (1995) J Chem Phys 103:3600

    Article  CAS  Google Scholar 

  27. Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219

    Article  CAS  Google Scholar 

  28. Buchachenko AA, Chałasiński G, Szczȩśniak MM (2007) Eur Phys J D 45:147

    Article  CAS  Google Scholar 

  29. Miller TM (2002) In: CRC Handbook of Chemistry and Physics, 83rd edn. CRC Press, Boca Raton, FL, pp 10–163

  30. Rinkleff R-H, Steudel A, Zieske KZ (1991) Phys D 18:101

    Article  CAS  Google Scholar 

  31. Wang Y, Dolg M (1996) Theor Chem Acc 100:124

    Google Scholar 

  32. Sadlej AJ (1988) Collect Czech Chem Commun 53:1999

    Article  Google Scholar 

  33. Edelman FT (2006) Coord Chem Rev 250:2511

    Article  CAS  Google Scholar 

  34. Saito Y (1995) Carbon 33:979

    Article  CAS  Google Scholar 

  35. Shinohara H (2000) Rep Prog Phys 63:843

    Article  CAS  Google Scholar 

  36. Liu S, Sun SJ (2000) Organomet Chem 599:74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roman Krems and Jacek Kłos for instructive comments and Alex Dalgarno, ** Chu and Gerrit C. Groenenboom for discussions and sharing with us their TDDFT results. The work was supported by the US National Science Foundation under grant No. CHE-0414241 (MMS, GC) and the Russian Science Support Foundation (AAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Chałasiński.

Additional information

Dedicated to Professor Marek T. Krygowski on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchachenko, A.A., Chałasiński, G. & Szczȩśniak, M.M. Diffuse basis functions for small-core relativistic pseudopotential basis sets and static dipole polarizabilities of selected lanthanides La, Sm, Eu, Tm and Yb. Struct Chem 18, 769–772 (2007). https://doi.org/10.1007/s11224-007-9243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9243-1

Keywords

Navigation