Log in

Do** properties in Co\(_{3-x}\)Ni\(_{x}\)O\(_{4}\), comparison between p-DFT and experimental values

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present work, we numerically and experimentally study the Co\(_{3-x}\)Ni\(_{x}\)O\(_{4}\) (spinel-like oxides) system. Using the perturbative density functional theory (p-DFT) method, we start the study from the homogeneous sample (\(x=0\)), obtaining the main electronic properties (band structure (BS), density of states (DOS), and Fermi surface (FS)). Subsequently, we doped (x) with Ni atoms in different proportions (0–7% respectively, taking 56 atoms as 100% and the percentage of do**, on this percentage). As we increase the do** \((x\ne 0)\), we have found that the forbidden gap decreases and the Fermi energy (FE) decreases, causing the material to exhibit a transition phase for a particular do** value. In addition, we find that more bands are generated when the system is doped, which would be responsible for the phase transition. The data from the theoretical analysis carried out in this paper was compared with the experimental data of various widely accepted works. Some of the results, when compared with the information available from the experimental ones, show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A L Bhatti, U Aftab, A Tahira, M Ishaq Abro, M K Samoon, M H Aghem, M A Bhattif and Z H Ibupoto, RSC Adv. 90, 12962 (2020)

    Article  ADS  Google Scholar 

  2. P C Nagajyothi, R Ramaraghavulu, K Yoo, K Pavani and J Shim, Colloids Surfaces 635, 128101 (2022)

  3. S Lavanya, T R Kumar, I L Raj, S Vinoth, R R Isaac, V Ganesh, I S Yahia and T H AlAbdulaal, Physica B: Condensed Matter 237, 414492 (2022)

    Google Scholar 

  4. A Lakehal, B Bedhiaf, A Bouaza, B Hadj, A Ammari and C Dalache, Mater. Res. 21, 3 (2018)

    Article  Google Scholar 

  5. V I Iglovikov, F Hébert, B Grémaud, G G Batrouni and R T Scalettar, Phys. Rev. B 90, 094506 (2014)

    Article  ADS  Google Scholar 

  6. Z S Yang, A M Ferrenti and R J Cava, J. Phys. Chem. Solids 151, 109912 (2021)

    Article  Google Scholar 

  7. S Park, S Kang, H Kim, K H Lee, P Kim, S Sim, N Lee, B Karuppannan, J Kim, J Kim, K I Sim, M J Coak, Y Noda, Cheol-Hwan Park, J H Kim and J-G Parl, Sci. Rep. 10, 20998 (2020)

    Article  ADS  Google Scholar 

  8. W Koshibae, K Tsutsui and S Maekawa, Phys. Rev. B 62, 6869 (2000)

    Article  ADS  Google Scholar 

  9. T Ishikawa, T Fukazawa, G **ng, T Tadano and T Miyake, Phys. Rev. M 5, 054408 (2021)

    Google Scholar 

  10. M H Upton, J Zhang, H Zheng, A Said and J F Mitchel, J. Phys.: Condens. Matter 32, 42550 (2020)

    Google Scholar 

  11. L K Shi, J Ma and J C W Song, 2D Mater. 7, 015028 (2019)

  12. P Giannozzi et al, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  13. P Giannozzi et al, J. Phys. Condens. Matter 29, 465901 (2017)

  14. S Poncé, ER Margine, C Verdi and F Giustino, J. Comput. Phys. Commun. 209, 4239405 (2016)

    Article  Google Scholar 

  15. Y L Li, W Luo, Z Zeng, H Q Lin, H K Mao and R Ahuja, PNAS 23, 9289 (2013)

    Article  ADS  Google Scholar 

  16. J O D Malafatti, A J Moreira, E C Paris, L J Cardenas, O A P Pereira and J M Rincón, Catalysts 12, 1199 (2022)

  17. L Li, Q Xu, Y Zhang, J Li, Y Fang, Y Dai, X Cheng and X Li, J. Alloys Compounds 823, 153750 (2020)

    Article  Google Scholar 

  18. A Lakehala, B Bedhiafa, A Bouazaa, H Benhebala, A Ammaria and C Dalached, Mater. Res. 21, 2356 (2018)

    Google Scholar 

  19. E Been, W S Lee, H Y Hwang, Y Cui, J Zaa-nen, T Devereaux, B Moritz and C Jia, Phys. Rev. X 11, 011050 (2021)

    Google Scholar 

  20. Y Zhang, L F Lin, W Hu, A Moreo, S Dong and E Dagotto, Phys. Rev. B 102, 195117 (2020)

    Article  ADS  Google Scholar 

  21. H Zhang, L **, S Wang, B **, X Shi, F Ye and J-W Mei, Phys. Rev. Res. 2, 013214 (2020)

    Article  Google Scholar 

  22. A S Botana and M R Norman, Phys. Rev. X 10, 01102 (2020)

    Google Scholar 

  23. S Z Yang, A M Ferrenti and R J Cava, J. Phys. Chem. Solids 151, 109912 (2021)

    Article  Google Scholar 

  24. S Park, S Kang, H Kim, K Hoon Lee, P Kim, S Sim, N Lee, B Karuppannan, J Kim, J Kim, K I Sim, M J Coak, Y Noda, Cheol-Hwan Park, J H Kim and J G Parl, Sci. Rep. 10, 20998 (2020)

    Article  ADS  Google Scholar 

  25. International Conference on Physics and Photonics Processes in Nano Sciences, J. Phys.: Conf. Ser. 1362, 012115 (2019)

  26. Z Weidong, A Paola, D Ramirez, Javier, D Claude, Valverde, J L Giroir-Fendler and A Anne, Catalysts 10, 865 (2020)

  27. M M Farhan et al, IOP Conf. Ser.: Mater. Sci. Eng. 871, 012090 (2020)

  28. J Chen, J Wu and A Selloni, Phys. Rev. B 83, 24003 (2011)

    Google Scholar 

  29. R Li, D **n, S Huang, Z Wang, L Huang and X Zhou, Chin. J. Phys. 64, 24561 (2018)

    Google Scholar 

  30. W Jiang, C M Baker, L R Lucas, J M Vura-Weis, J Alivisatos and S R Leone, The J. Phys. Chem. C 118, 39001 (2014)

  31. W Kohn and L J Sham, Phys. Rev. B 140, 1133 (1965)

Download references

Acknowledgements

PD and DL acknowledge partial financial support from FONDECYT 1231020. CA thanks S Aguirre and M Aguirre for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Aguirre.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, C.A., DÍaz, P., Laroze, D. et al. Do** properties in Co\(_{3-x}\)Ni\(_{x}\)O\(_{4}\), comparison between p-DFT and experimental values. Pramana - J Phys 98, 84 (2024). https://doi.org/10.1007/s12043-024-02772-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02772-9

Keywords

PACS Nos

Navigation