Log in

Amperometric dopamine sensor based on carbon nanofiber, Fe3O4 nanoparticles, and silver nanoparticles modified glassy carbon electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, an amperometric dopamine sensor based on carbon nanofibers (CNF), Fe3O4 nanoparticles (Fe3O4NP), and silver nanoparticles (AgNP) modified glassy carbon electrode (GCE) was developed. In order to determine the optimum surface composition, the effects of CNF amount, Fe3O4 amount and the electrodeposition step of AgNP were investigated. Optimum experimental parameters such as working potential and pH of test solution were also explored. The morphological and electrochemical properties of the AgNP/CNF − Fe3O4NP/GCE were studied using scanning electron microscopy, cyclic voltammetry, and chronoamperometry. The AgNP/CNF − Fe3O4NP/GCE showed linear response to dopamine between 2.0 × 10−7 and 5.5 × 10−4 M with a detection limit of 1.8 × 10−7 M and sensitivity of 37.24 μA mM−1. Analytical performance characteristics such as reproducibility, reusability, and selectivity were also investigated for the presented dopamine sensor. The sensor was successfully applied to the detection of dopamine in dopamine hydrochloride injection samples using the standard addition method and good recoveries were obtained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Pandikumar A, How GTS, Peik See T, Saiha Omar F, Jayabal S, Zangeneh Kamali K, Yusoff N, Jamil A, Ramasamy R, John SA, Lim HN, Huang NM (2014) RSC Adv 108:63296

    Article  Google Scholar 

  2. Ma B, Guo H, Wang M, Li L, Jia X, Chen H, Xue R, Yang W (2019) Electroanalysis 31:1002

    Article  CAS  Google Scholar 

  3. Huang Q, Lin X, Tong L, Tong QX (2020) ACS Sustain Chem Eng 8:1644

    Article  Google Scholar 

  4. Revanappa SK, Soni I, Siddalinganahalli M, Jayaprakash GK, Flores-Moreno R, Bananakere Nanjegowda C (2022) Materials 15:6337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MDA, Ahammad AJS (2021) Chem Asian J 16:3516

    Article  CAS  PubMed  Google Scholar 

  6. Suhito IR, Angeline N, Kim TH (2019) BioChip J 13:20

    Article  CAS  Google Scholar 

  7. Nagaraja P, Murthy KCS, Rangappa KS, Gowda NMM (1998) Talanta 46:39

    Article  CAS  PubMed  Google Scholar 

  8. Carter, JE, Johnson JH, Baaske DM (1982) In: Florey K (ed), Analytical Profiles of Drug Substances, vol 11, p 257. Academic Press

  9. Umapathi S, Masud J, Coleman H, Nath M (2020) Microchim Acta 187:440

    Article  CAS  Google Scholar 

  10. Yang J, Hu Y, Li Y (2019) Biosens Bioelectron 135:224

    Article  CAS  PubMed  Google Scholar 

  11. Bounegru AV, Bounegru I (2023) Polymers 15:3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venkata Prasad G, Jang SJ, Chandra Sekhar Y, Madhusudana Reddy T, Subramanyam Sarma L, Kim HB, Kim TH (2023) J Electroanal Chem 941:117544

    Article  CAS  Google Scholar 

  13. Jiang Z, Gao P, Yang L, Huang C, Li Y (2015) Anal Chem 87:12177

    Article  CAS  PubMed  Google Scholar 

  14. Park JY, Myung SW, Kim IS, Choi DK, Kwon SJ, Yoon SH (2013) Biol Pharm Bull 36:252

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y, Liu L, Han Y, Bai J, Du G, Gao Q (2011) Se Pu Chin J Chromatogr 29:146

    Article  CAS  Google Scholar 

  16. Suzuki Y (2017) Sens Actuators B Chem 239:383

    Article  CAS  Google Scholar 

  17. Gao W, Qi L, Liu Z, Majeed S, Kitte SA, Xu G (2017) Sens Actuators B Chem 238:468

    Article  CAS  Google Scholar 

  18. Wang Y, Xu H, Zhang J, Li G (2008) Sensors 8:2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C (2016) TrAC Trends Anal Chem 76:15

    Article  CAS  Google Scholar 

  20. Sajid M, Baig N, Alhooshani K (2019) TrAC Trends Anal Chem 118:368

    Article  CAS  Google Scholar 

  21. Arumugasamy SK, Govindaraju S, Yun K (2020) Appl Surf Sci 508:145294

    Article  CAS  Google Scholar 

  22. Tsierkezos NG, Wetzold N, Ritter U, Hübler AC (2013) Monatsh Chem 144:581

    Article  CAS  Google Scholar 

  23. Liu Q, Zhu X, Huo Z, He X, Liang Y, Xu M (2012) Talanta 97:557

    Article  CAS  PubMed  Google Scholar 

  24. Ran G, Li Y, **a Y (2020) Monatsh Chem 151:293

    Article  CAS  Google Scholar 

  25. Khan M, Abid K, Ferlazzo A, Bressi V, Espro C, Hussain M, Foti A, Gucciardi PG, Neri GA (2023) Chemosensors 11:379

    Article  CAS  Google Scholar 

  26. Nazari Z, Hadi Nematollahi M, Zareh F, Pouramiri B, Mehrabani M (2023) ChemistrySelect 8:e202203630

    Article  CAS  Google Scholar 

  27. Zhang X, Yan B, Peng L, Zhao J, Zheng J (2023) ChemistrySelect 8:e202204022

    Article  CAS  Google Scholar 

  28. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang C, Denno ME, Pyakurel P, Venton BJ (2015) Anal Chim Acta 887:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaçar C, Erden PE (2020) Anal Bioanal Chem 412:5315

    Article  PubMed  Google Scholar 

  31. Sun J, Li L, Zhang X, Liu D, Lv S, Zhu D, Wu T, You T (2015) RSC Adv 5:11925

    Article  CAS  Google Scholar 

  32. Khanna V, Bakshi BR, Lee LJ (2008) J Ind Ecol 12:394

    Article  CAS  Google Scholar 

  33. Okman Koçoğlu İ, Erden PE, Kılıç E (2024) Anal Biochem 684:115387

    Article  PubMed  Google Scholar 

  34. Carpenter MA, Mathur S, Kolmakov A (2012) Metal Oxide Nanomaterials for Chemical Sensors. Springer Science and Business Media

  35. Nunes D, Pimentel A, Gonçalves A, Pereira S, Branquinho R, Barquinha P, Fortunato E, Martins R (2019) Semicond Sci Technol 34:043001

    Article  CAS  Google Scholar 

  36. Dalkıran B, Erden PE, Kaçar C, Kılıç E (2019) Electroanalysis 31:1324

    Article  Google Scholar 

  37. Teymourian H, Salimi A, Hallaj R (2012) Biosens Bioelectron 33:60

    Article  CAS  PubMed  Google Scholar 

  38. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Chem Soc Rev 44:6330

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Zhao T, Chen T, Liu Y, Nam Ong C, **e J (2015) Nanoscale 7:7502

    Article  CAS  PubMed  Google Scholar 

  40. Baghayeri M, Namadchian M, Karimi-Maleh H, Beitollahi H (2013) J Electroanal Chem 697:53

    Article  CAS  Google Scholar 

  41. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochim Acta 55:6239

    Article  CAS  Google Scholar 

  42. Huang KJ, Liu YJ, Liu YM, Wang LL (2014) J Hazard Mater 276:207

    Article  CAS  PubMed  Google Scholar 

  43. Dehdashtian S, Gholivand MB, Shamsipur M, Kariminia S (2016) Mater Sci Eng C 58:53

    Article  CAS  Google Scholar 

  44. Lian W, Liu S, Yu J, **ng X, Li J, Cui M, Huang J (2012) Biosens Bioelectron 38:163

    Article  CAS  PubMed  Google Scholar 

  45. Satyanarayana M, Goud KY, Reddy KK, Kumar VS, Gobi KV (2019) Mater Sci Eng C 101:103

    Article  CAS  Google Scholar 

  46. Rao H, Liu Y, Zhong J, Zhang Z, Zhao X, Liu X, Jiang Y, Zou P, Wang X, Wang Y (2017) ACS Sustain Chem Eng 5:10926

    Article  CAS  Google Scholar 

  47. Annu RA (2020) Int J Biol Macromol 164:4231

    Article  CAS  PubMed  Google Scholar 

  48. Piovesan JV, Haddad VF, Pereira DF, Spinelli A (2018) J Electroanal Chem 823:617

    Article  CAS  Google Scholar 

  49. Koçoğlu İO, Erden PE, Kenar A, Kılıç E (2019) Anal Bioanal Chem 411:413

    Article  PubMed  Google Scholar 

  50. Bard AJ, Faulkner LR, White HS (2022) Electrochemical Methods: Fundamentals and Applications. John Wiley and Sons

  51. Ahmed J, Faisal M, Harraz FA, Jalalah M, Alsareii SA (2022) Phys E Low-Dimens Syst Nanostruct 135:114952

    Article  CAS  Google Scholar 

  52. Wudarska E, Chrzescijanska E, Kusmierek E, Rynkowski J (2015) Int J Electrochem Sci 10:9433

    Article  CAS  Google Scholar 

  53. Baloach Q, Nafady A, Tahira A, Sirajuddin SSTH, Shaikh T, Arain M, Willander M, Ibupoto ZH (2017) Microsyst Technol 23:1229

    Article  CAS  Google Scholar 

  54. Njagi J, Chernov MM, Leiter JC, Andreescu S (2010) Anal Chem 82:989

    Article  CAS  PubMed  Google Scholar 

  55. Li SJ, Deng DH, Shi Q, Liu SR (2012) Microchim Acta 177:325

    Article  CAS  Google Scholar 

  56. Deepika J, Sha R, Badhulika S (2019) Microchim Acta 186:480

    Article  CAS  Google Scholar 

  57. Younus AR, Iqbal J, Muhammad N, Rehman F, Tariq M, Niaz A, Badshah S, Saleh TA, Rahim A (2019) Microchim Acta 186:471

    Article  Google Scholar 

  58. Cao XH, Zhang LX, Cai WP, Li YQ (2010) Electrochem Commun 12:540

    Article  CAS  Google Scholar 

  59. Mani V, Devasenathipathy R, Chen SM, Kohilarani K, Ramachandran R (2015) Int J Electrochem Sci 10:1199

    Article  Google Scholar 

  60. Xue C, Han Q, Wang Y, Wu J, Wen T, Wang R, Hong J, Zhou X, Jiang H (2013) Biosens Bioelectron 49:199

    Article  CAS  PubMed  Google Scholar 

  61. Yang Z, Liu X, Zheng X, Zheng J (2018) J Electroanal Chem 817:48

    Article  CAS  Google Scholar 

  62. Xue J, Yao C, Li N, Su Y, Xu L, Hou S (2021) J Electroanal Chem 886:115133

    Article  CAS  Google Scholar 

  63. Wieczorek M, Dębosz M, Świt P, Piech A, Kasperek J, Kościelniak P (2018) Monatsh Chem 149:1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen YH, Kirankumar R, Kao CL, Chen PY (2016) Electrochim Acta 205:124

    Article  CAS  Google Scholar 

  65. Tığ GA (2017) J Electroanal Chem 807:19

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Karabük University Scientific Research Projects Coordination Unit. Project Number: KBÜBAP-23-YL-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İrem Okman Koçoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashıl, H.A.M.S.A., Okman Koçoğlu, İ. Amperometric dopamine sensor based on carbon nanofiber, Fe3O4 nanoparticles, and silver nanoparticles modified glassy carbon electrode. Monatsh Chem 155, 663–672 (2024). https://doi.org/10.1007/s00706-024-03219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-024-03219-y

Keywords

Navigation